版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆遼寧省莊河高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角的終邊過點,則的值為A. B. C. D.2.某中學(xué)高一年級甲班有7名學(xué)生,乙班有8名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績的中位數(shù)是82,若從成績在的學(xué)生中隨機抽取兩名學(xué)生,則兩名學(xué)生的成績都高于82分的概率為()A. B. C. D.3.在中,角的對邊分別為,若,則的最小值是()A.5 B.8 C.7 D.64.已知與均為單位向量,它們的夾角為,那么等于()A. B. C. D.45.己知數(shù)列和的通項公式分別內(nèi),,若,則數(shù)列中最小項的值為()A. B.24 C.6 D.76.過點作拋物線的兩條切線,切點為,則的面積為()A. B. C. D.7.不等式的解集是A.或 B.或C. D.8.在中,若則等于()A. B. C. D.9.已知向量a=(1,-1),bA.-1 B.0 C.1 D.210.已知,且,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個三角形的三條邊成等比數(shù)列,那么,公比q的取值范圍是__________.12.函數(shù)的最小正周期是____.13.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為,若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側(cè)面積為________.14.若是三角形的內(nèi)角,且,則等于_____________.15.對任意的θ∈0,π2,不等式116.已知,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,已知圓的方程為,過點的直線與圓交于兩點,.(1)若,求直線的方程;(2)若直線與軸交于點,設(shè),,,R,求的值.18.(1)計算(2)已知,求的值19.已知是同一平面內(nèi)的三個向量,其中.(1)若,求;(2)若與共線,求的值.20.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)當(dāng)時,求函數(shù)的最大值和最小值.21.已知,,且.(1)求函數(shù)的最小正周期;(2)若用和分別表示函數(shù)W的最大值和最小值.當(dāng)時,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由三角函數(shù)的廣義定義可得的值.【詳解】因為,故選B.【點睛】本題考查三角函數(shù)的概念及定義,考查基本運算能力.2、D【解析】
計算得到,,再計算概率得到答案.【詳解】,解得;,解得;故.故選:.【點睛】本題考查了平均值,中位數(shù),概率的計算,意在考查學(xué)生的應(yīng)用能力.3、D【解析】
先化簡條件中的等式,利用余弦定理整理得到等式,然后根據(jù)等式利用基本不等式求解最小值.【詳解】由,得,化簡整理得,,即,當(dāng)且僅當(dāng),即時,取等號.故選D.【點睛】本題考查正、余弦定理在邊角化簡中的應(yīng)用,難度一般.對于利用基本不等求最值的時候,一定要注意取到等號的條件.4、A【解析】本題主要考查的是向量的求模公式.由條件可知==,所以應(yīng)選A.5、D【解析】
根據(jù)兩個數(shù)列的單調(diào)性,可確定數(shù)列,也就確定了其中的最小項.【詳解】由已知數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,且計算后知,又,∴數(shù)列中最小項的值是1.故選D.【點睛】本題考查數(shù)列的單調(diào)性,數(shù)列的最值.解題時依據(jù)題意確定大小即可.本題難度一般.6、B【解析】設(shè)拋物線過點的切線方程為,即,將點代入可得,同理都滿足方程,即為直線的方程為,與拋物線聯(lián)立,可得,點到直線的距離,則的面積為,故選B.【方法點晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及弦長公式與點到直線距離公式,屬于難題.求曲線切線方程的一般步驟是:(1)求出在處的導(dǎo)數(shù),即在點出的切線斜率(當(dāng)曲線在處的切線與軸平行時,在處導(dǎo)數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.7、C【解析】
把原不等式化簡為,即可求解不等式的解集.【詳解】由不等式即,即,得,則不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中把不等式對應(yīng)的一元二次方程能夠因式分解,即能夠轉(zhuǎn)化為幾個代數(shù)式的乘積形式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、D【解析】
由正弦定理,求得,再由,且,即可求解,得到答案.【詳解】由題意,在中,由正弦定理可得,即,又由,且,所以或,故選D.【點睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟記三角形的正弦定理,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、C【解析】
由向量的坐標(biāo)運算表示2a【詳解】解:因為a=(1,-1),b=(-1,2故選C.【點睛】本題考查了向量的加法和數(shù)量積的坐標(biāo)運算;屬于基礎(chǔ)題目.10、C【解析】
根據(jù)同角三角函數(shù)的基本關(guān)系及兩角和差的正弦公式計算可得.【詳解】解:因為,.因為,所以.因為,,所以.所以.故選:【點睛】本題考查同角三角函數(shù)的基本關(guān)系,兩角和差的正弦公式,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)三邊按遞增順序排列為,其中.則,即.解得.由q≥1知q的取值范圍是1≤q<.設(shè)三邊按遞減順序排列為,其中.則,即.解得.綜上所述,.12、【解析】
將三角函數(shù)化簡為標(biāo)準(zhǔn)形式,再利用周期公式得到答案.【詳解】由于所以【點睛】本題考查了三角函數(shù)的化簡,周期公式,屬于簡單題.13、【解析】
先求出四棱錐的底面對角線的長度,結(jié)合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,可知四條側(cè)棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側(cè)面積.【詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側(cè)棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側(cè)面積為.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,考查了學(xué)生的空間想象能力與計算求解能力,屬于中檔題.14、【解析】∵是三角形的內(nèi)角,且,∴故答案為點睛:本題是一道易錯題,在上,,分兩種情況:若,則;若,則有兩種情況銳角或鈍角.15、-4,5【解析】1sin2θ+4cos2點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.16、【解析】
利用同角三角函數(shù)的基本關(guān)系將弦化切,再代入計算可得.【詳解】解:,故答案為:【點睛】本題考查同角三角函數(shù)的基本關(guān)系,齊次式的計算,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)設(shè)斜率為,則直線的方程為,利用圓的弦長公式,列出方程求得的值,即可得到直線的方程;(2)當(dāng)直線的斜率不存在時,根據(jù)向量的運算,求得,當(dāng)直線的斜率存在時,設(shè)直線的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,以及向量的運算,求得,得到答案.【詳解】(1)當(dāng)直線的斜率不存在時,,不符合題意;當(dāng)直線的斜率存在時,設(shè)斜率為,則直線的方程為,所以圓心到直線的距離,因為,所以,解得,所以直線的方程為..(2)當(dāng)直線的斜率不存在時,不妨設(shè),,,因為,,所以,,所以,,所以.當(dāng)直線的斜率存在時,設(shè)斜率為,則直線的方程為:,因為直線與軸交于點,所以.直線與圓交于點,,設(shè),,由得,,所以,;因為,,所以,,所以,,所以.綜上,.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及向量的坐標(biāo)運算,其中解答中熟記圓的弦長公式,以及聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和向量的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.18、(1)1+;(2).【解析】
(1)利用對數(shù)的運算法則計算得解;(2)先化簡已知得,再把它代入化簡的式子即得解.【詳解】(1)原式=1+;(2)由題得,所以.【點睛】本題主要考查對數(shù)的運算,考查誘導(dǎo)公式化簡求值和同角的三角函數(shù)關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.19、(1);(2)【解析】
(1)根據(jù)向量的坐標(biāo)的運算法則和向量垂直的條件,以及模的定義即可求出.(2)根據(jù)向量共線的條件即可求出.【詳解】(1)因為(2)由已知:【點睛】本題考查了向量的坐標(biāo)運算以及向量的垂直和平行的坐標(biāo)表示,屬于基礎(chǔ)題.20、(1);(2)函數(shù)的最大值為,最小值為.【解析】
用二倍角正弦公式、降冪公式、輔助角公式對函數(shù)的解析式進(jìn)行化簡,然后利用正弦型函數(shù)的單調(diào)性求解即可.【詳解】.(1)當(dāng)時,函數(shù)遞增,解得,所以函數(shù)的單調(diào)遞增區(qū)間為;(2)因為,所以,因此所以函數(shù)的最大值為,最小值為.【點睛】本題考查了正弦型函數(shù)的單調(diào)性和最值,考查了輔
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年白糖道路運輸服務(wù)協(xié)議范例版B版
- 2024年社區(qū)便利店商品庫存管理與銷售預(yù)測合同3篇
- 2024版服務(wù)器租賃合同下載
- 2024年高速公路拓寬工程征收補償合同
- 2024年生物醫(yī)藥研發(fā)與許可協(xié)議
- 西藏集中式光伏電站(10MW以上)建設(shè)流程
- oqc組長崗位職責(zé)(共5篇)
- 2023年第一季度思想?yún)R報
- 老年護理-復(fù)習(xí)題
- 2025年度建筑工程施工安全管理及文明施工責(zé)任書3篇
- 商業(yè)定價表(含各商鋪價格測算銷售回款)
- 【化學(xué)】重慶市2021-2022學(xué)年高一上學(xué)期期末聯(lián)合檢測試題
- 供應(yīng)商物料質(zhì)量問題賠償協(xié)議(終端)
- 單位工程質(zhì)量控制程序流程圖
- 部編版小學(xué)語文三年級(下冊)學(xué)期課程綱要
- 化學(xué)工業(yè)有毒有害作業(yè)工種范圍表
- 洼田飲水試驗
- 定置定位管理一
- 商票保貼協(xié)議
- TOP-DOWN培訓(xùn)
- 電動力學(xué)答案完整
評論
0/150
提交評論