版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省松滋市四中高一下數(shù)學(xué)期末檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,,BC邊上的高等于,則A. B. C. D.2.若,且,則的值是()A. B. C. D.3.函數(shù),的值域是()A. B. C. D.4.為等差數(shù)列的前項(xiàng)和,且,.記,其中表示不超過的最大整數(shù),如,.?dāng)?shù)列的前項(xiàng)和為()A. B. C. D.5.公差不為零的等差數(shù)列的前項(xiàng)和為.若是的等比中項(xiàng),,則等于()A.18 B.24 C.60 D.906.設(shè)函數(shù),,其中,.若,且的最小正周期大于,則()A., B.,C., D.,7.某四棱錐的三視圖如圖所示,則它的最長(zhǎng)側(cè)棱的長(zhǎng)為()A. B. C. D.48.同時(shí)擲兩枚骰子,則向上的點(diǎn)數(shù)相等的概率為()A. B. C. D.9.若數(shù)列,若,則在下列數(shù)列中,可取遍數(shù)列前項(xiàng)值的數(shù)列為()A. B. C. D.10.設(shè)為銳角,,若與共線,則角()A.15° B.30° C.45° D.60°二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線l在y軸上的截距為1,且垂直于直線,則的方程是____________.12.已知1,,,,4成等比數(shù)列,則______.13.設(shè)為實(shí)數(shù),為不超過實(shí)數(shù)的最大整數(shù),如,.記,則的取值范圍為,現(xiàn)定義無窮數(shù)列如下:,當(dāng)時(shí),;當(dāng)時(shí),,若,則________.14.如圖,在正方體中,有以下結(jié)論:①平面;②平面;③;④異面直線與所成的角為.則其中正確結(jié)論的序號(hào)是____(寫出所有正確結(jié)論的序號(hào)).15.方程的解集是____________.16.如果函數(shù)的圖象關(guān)于直線對(duì)稱,那么該函數(shù)在上的最小值為_______________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知關(guān)于的不等式的解集為.(1)求的值;(2)求函數(shù)的最小值.18.從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄,(單位:千元)的數(shù)據(jù)資料,算出,附:線性回歸方程,其中為樣本平均值.(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;(2)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.19.如圖,在四棱錐中,,側(cè)面底面.(1)求證:平面平面;(2)若,且二面角等于,求直線與平面所成角的正弦值.20.已知向量.(1)若,且,求實(shí)數(shù)的值;(2)若,且與的夾角為,求實(shí)數(shù)的值.21.在中,角A,B,C的對(duì)邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】試題分析:設(shè)邊上的高線為,則,所以.由正弦定理,知,即,解得,故選D.【考點(diǎn)】正弦定理【方法點(diǎn)撥】在平面幾何圖形中求相關(guān)的幾何量時(shí),需尋找各個(gè)三角形之間的聯(lián)系,交叉使用公共條件,常常將所涉及到已知幾何量與所求幾何集中到某一個(gè)三角形,然后選用正弦定理與余弦定理求解.2、A【解析】
對(duì)兩邊平方,可得,進(jìn)而可得,再根據(jù),可知,由此即可求出結(jié)果.【詳解】因?yàn)椋?,所以,所以,又,所以所?故選:A.【點(diǎn)睛】本題主要考查了同角的基本關(guān)系,屬于基礎(chǔ)題.3、A【解析】
由的范圍求出的范圍,結(jié)合余弦函數(shù)的性質(zhì)即可求出函數(shù)的值域.【詳解】∵,∴,∴當(dāng),即時(shí),函數(shù)取最大值1,當(dāng)即時(shí),函數(shù)取最小值,即函數(shù)的值域?yàn)椋蔬xA.【點(diǎn)睛】本題主要考查三角函數(shù)在給定區(qū)間內(nèi)求函數(shù)的值域問題,通過自變量的范圍求出整體的范圍是解題的關(guān)鍵,屬基礎(chǔ)題.4、D【解析】
利用等差數(shù)列的通項(xiàng)公式與求和公式可得,再利用,可得,,.即可得出.【詳解】解:為等差數(shù)列的前項(xiàng)和,且,,.可得,則公差.,,則,,,.?dāng)?shù)列的前項(xiàng)和為:.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、對(duì)數(shù)運(yùn)算性質(zhì)、取整函數(shù),考查了推理能力與計(jì)算能力,屬于中檔題.5、C【解析】
由等比中項(xiàng)的定義可得,根據(jù)等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,列方程解出和,進(jìn)而求出.【詳解】因?yàn)槭桥c的等比中項(xiàng),所以,即,整理得,又因?yàn)?,所以,故,故選C.【點(diǎn)睛】該題考查的是有關(guān)等差數(shù)列求和問題,涉及到的知識(shí)點(diǎn)有等差數(shù)列的通項(xiàng),等比中項(xiàng)的定義,等差數(shù)列的求和公式,正確應(yīng)用相關(guān)公式是解題的關(guān)鍵.6、B【解析】
根據(jù)周期以及最值點(diǎn)和平衡位置點(diǎn)先分析的值,然后帶入最值點(diǎn)計(jì)算的值.【詳解】因?yàn)?,,所以,則,所以,即,故;則,代入可得:且,所以.故選B.【點(diǎn)睛】(1)三角函數(shù)圖象上,最值點(diǎn)和平衡位置的點(diǎn)之間相差奇數(shù)個(gè)四分之一周期的長(zhǎng)度;(2)計(jì)算的值時(shí),注意選用最值點(diǎn)或者非特殊位置點(diǎn),不要選用平衡位置點(diǎn)(容易多解).7、C【解析】
由三視圖可知:底面,,底面是一個(gè)直角梯形,,,均為直角三角形,判斷最長(zhǎng)的棱,通過幾何體求解即可.【詳解】由三視圖可知:該幾何體如圖所示,則底面,,底面是一個(gè)直角梯形,其中,,,,可得,,均為直角三角形,最長(zhǎng)的棱是,.故選:C.【點(diǎn)睛】本題考查了三視圖,線面垂直的判定與性質(zhì)定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.8、D【解析】
利用古典概型的概率公式即可求解.【詳解】同時(shí)擲兩枚骰子共有種情況,其中向上點(diǎn)數(shù)相同的有種情況,其概率為.故選:D【點(diǎn)睛】本題考查了古典概型的概率計(jì)算公式,解題的關(guān)鍵是找出基本事件個(gè)數(shù),屬于基礎(chǔ)題.9、D【解析】
推導(dǎo)出是以6為周期的周期數(shù)列,從而是可取遍數(shù)列前6項(xiàng)值的數(shù)列.【詳解】數(shù)列,,,,,,,,,是以6為周期的周期數(shù)列,是可取遍數(shù)列前6項(xiàng)值的數(shù)列.故選:D.【點(diǎn)睛】本題考查數(shù)列的周期性與三角函數(shù)知識(shí)的交會(huì),考查基本運(yùn)算求解能力,求解時(shí)注意函數(shù)與方程思想的應(yīng)用.10、B【解析】由題意,,又為銳角,∴.故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、;【解析】試題分析:設(shè)垂直于直線的直線為,因?yàn)橹本€在軸上的截距為,所以,所以直線的方程是.考點(diǎn):兩直線的垂直關(guān)系.12、2【解析】
因?yàn)?,,,,4成等比數(shù)列,根據(jù)等比數(shù)列的性質(zhì),可得,再利用,確定取值.【詳解】因?yàn)?,,,,4成等比數(shù)列,所以,所以或,又因?yàn)?,所?故答案為:2【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì),還考查運(yùn)算求解的能力,屬于基礎(chǔ)題.13、【解析】
根據(jù)已知條件,計(jì)算數(shù)列的前幾項(xiàng),觀察得出無窮數(shù)列呈周期性變化,即可求出的值?!驹斀狻慨?dāng)時(shí),,,,,……,無窮數(shù)列周期性變化,周期為2,所以?!军c(diǎn)睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,通過取整函數(shù)得到數(shù)列,觀察數(shù)列的特征,求數(shù)列中的某項(xiàng)值。14、①③【解析】
①:利用線面平行的判定定理可以直接判斷是正確的結(jié)論;②:舉反例可以判斷出該結(jié)論是錯(cuò)誤的;③:可以利用線面垂直的判定定理,得到線面垂直,再利用線面垂直的性質(zhì)定理可以判斷是正確的結(jié)論;④:可以通過,可以判斷出異面直線與所成的角為,即本結(jié)論是錯(cuò)誤的,最后選出正確的結(jié)論序號(hào).【詳解】①:平面,平面平面,故本結(jié)論是正確的;②:在正方形中,,顯然不垂直,而,所以不互相垂直,要是平面,則必有互相垂直,顯然是不可能的,故本結(jié)論是錯(cuò)誤的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本結(jié)論是正確的;④:因?yàn)?,所以異面直線與所成的角為,在正方形中,,故本結(jié)論是錯(cuò)誤的,因此正確結(jié)論的序號(hào)是①③.【點(diǎn)睛】本題考查了線面平行的判定定理、線面垂直的判定定理、性質(zhì)定理,考查了異面直線所成的角、線面垂直的性質(zhì).15、【解析】
由方程可得或,然后分別解出規(guī)定范圍內(nèi)的解即可.【詳解】因?yàn)樗曰蛴傻没蛞驗(yàn)?,所以由得因?yàn)?,所以綜上:解集是故答案為:【點(diǎn)睛】方程的等價(jià)轉(zhuǎn)化為或,不要把遺漏了.16、【解析】
根據(jù)三角公式得輔助角公式,結(jié)合三角函數(shù)的對(duì)稱性求出值,再利用的取值范圍求出函數(shù)的最小值.【詳解】解:,令,則,則.因?yàn)楹瘮?shù)的圖象關(guān)于直線對(duì)稱,所以,即,則,平方得.整理可得,則,所以函數(shù).因?yàn)椋?,?dāng)時(shí),即,函數(shù)有最小值為.故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)最值求解,結(jié)合輔助角公式和利用三角函數(shù)的對(duì)稱性建立方程是解決本題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)1.【解析】
(1)利用根與系數(shù)的關(guān)系,得到等式和不等式,最后求出的值;(2)化簡(jiǎn)函數(shù)的解析式,利用基本不等式可以求出函數(shù)的最小值.【詳解】解:(1)由題意知:,解得.(2)由(1)知,∴,而時(shí),當(dāng)且僅當(dāng),即時(shí)取等號(hào)而,∴的最小值為1.【點(diǎn)睛】本題考查了已知一元二次不等式的解集求參數(shù)問題,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.18、(1);(2)1.7【解析】
(1)根據(jù)數(shù)據(jù),利用最小二乘法,即可求得y對(duì)月收入x的線性回歸方程回歸方程x;(2)將x=7代入即可預(yù)測(cè)該家庭的月儲(chǔ)蓄.【詳解】(1)由題意知,,∴由.故所求回歸方程為(2)將代入回歸方程可以預(yù)測(cè)該家庭的月儲(chǔ)蓄為(千元).【點(diǎn)睛】本題考查線性回歸方程的應(yīng)用,考查最小二乘法求線性回歸方程,考查轉(zhuǎn)化思想,屬于中檔題.19、(1)證明見解析;(2).【解析】
(1)由得,,由側(cè)面底面得側(cè)面,由面面垂直的判定即可證明;(2)由側(cè)面,可得,得是二面角的平面角,,推得為等腰直角三角形,取的中點(diǎn),連接可得,由平面平面,得平面,證明平面,得點(diǎn)到平面的距離等于點(diǎn)到平面的距離,,再利用求解即可【詳解】(1)證明:由可得,因?yàn)閭?cè)面底面,交線為底面且則側(cè)面,平面所以,平面平面;(2)由側(cè)面可得,,則是二面角的平面角,由可得,為等腰直角三角形取的中點(diǎn),連接可得因?yàn)槠矫嫫矫妫痪€為平面且所以平面,點(diǎn)到平面的距離為.因?yàn)槠矫鎰t平面所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離,.設(shè),則在中,;在中,設(shè)直線與平面所成角為即所以,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查面面垂直的判定,二面角及線面角的求解,考查空間想象能與運(yùn)算求解能力,關(guān)鍵是線面平行的性質(zhì)得到點(diǎn)D到面的距離,是中檔題20、(1);(2).【解析】
(1)根據(jù)平面向量加法和數(shù)乘的坐標(biāo)表示公式、數(shù)量積的坐標(biāo)表示公式,結(jié)合兩個(gè)互相垂直的平面向量數(shù)量積為零,進(jìn)行求解即可;(2)利用平面向量夾角公式進(jìn)行求解即可.【詳解】(1)當(dāng)時(shí),.因?yàn)椋?;?)當(dāng)時(shí),所以有,因?yàn)榕c的夾角為,所以有.【點(diǎn)睛】本題考查了平面向量運(yùn)算的坐標(biāo)表示公式,考查了平面向量夾角公式,考查了數(shù)學(xué)運(yùn)算能力.21、(1);(2)【解析】
(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達(dá)到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版國(guó)際貿(mào)易專屬代理權(quán)協(xié)議樣本版B版
- 2024獨(dú)家定制幽默離婚合同范本版B版
- 二零二五年度安置房建設(shè)項(xiàng)目設(shè)計(jì)委托合同
- 2024校園停車設(shè)施建設(shè)與管理合同
- 金融科技創(chuàng)新合作項(xiàng)目合同
- 2025年度特色樹種種植與推廣承包合作協(xié)議3篇
- 密褶式大風(fēng)量過濾器安全操作規(guī)程
- 通訊設(shè)備銷售與安裝合同
- 2025年度物業(yè)服務(wù)合同糾紛調(diào)解與執(zhí)行協(xié)議3篇
- 二零二五年度城市公共安全風(fēng)險(xiǎn)評(píng)估咨詢合同協(xié)議2篇
- 污水處理站運(yùn)行維護(hù)管理方案
- 農(nóng)村公路養(yǎng)護(hù)工程施工組織設(shè)計(jì)
- 個(gè)人如何開辦婚介公司,婚介公司經(jīng)營(yíng)和管理
- 公司物流倉(cāng)儲(chǔ)規(guī)劃方案及建議書
- 天津市歷年社會(huì)保險(xiǎn)繳費(fèi)基數(shù)、比例
- 智能掃地機(jī)器人畢業(yè)設(shè)計(jì)
- 2024國(guó)家開放大學(xué)電大??啤秾W(xué)前兒童發(fā)展心理學(xué)》期末試題及答案
- 汽車座椅面套縫紉工時(shí)定額的研究
- 立體幾何??级ɡ砜偨Y(jié)(八大定理)
- 噴嘴壓力計(jì)算表及選型
- 深化校企合作協(xié)同育人的實(shí)踐案例
評(píng)論
0/150
提交評(píng)論