陜西省西安三中高三下期末聯(lián)考新高考數(shù)學(xué)試題_第1頁
陜西省西安三中高三下期末聯(lián)考新高考數(shù)學(xué)試題_第2頁
陜西省西安三中高三下期末聯(lián)考新高考數(shù)學(xué)試題_第3頁
陜西省西安三中高三下期末聯(lián)考新高考數(shù)學(xué)試題_第4頁
陜西省西安三中高三下期末聯(lián)考新高考數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省西安三中高三下期末聯(lián)考新高考數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.2.設(shè)分別是雙線的左、右焦點,為坐標原點,以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.3.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.4.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.45.設(shè)復(fù)數(shù)滿足為虛數(shù)單位),則()A. B. C. D.6.體育教師指導(dǎo)4個學(xué)生訓(xùn)練轉(zhuǎn)身動作,預(yù)備時,4個學(xué)生全部面朝正南方向站成一排.訓(xùn)練時,每次都讓3個學(xué)生“向后轉(zhuǎn)”,若4個學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.67.已知,若則實數(shù)的取值范圍是()A. B. C. D.8.已知,則的值構(gòu)成的集合是()A. B. C. D.9.設(shè)直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.10.展開項中的常數(shù)項為A.1 B.11 C.-19 D.5111.已知,則()A. B. C. D.12.已知全集為,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是______噸.14.函數(shù)在區(qū)間內(nèi)有且僅有兩個零點,則實數(shù)的取值范圍是_____.15.某中學(xué)數(shù)學(xué)競賽培訓(xùn)班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學(xué)成績的平均數(shù)為81,乙組5名同學(xué)成績的中位數(shù)為73,則x-y的值為________.16.《九章算術(shù)》中記載了“今有共買豕,人出一百,盈一百;人出九十,適足。問人數(shù)、豕價各幾何?”.其意思是“若干個人合買一頭豬,若每人出100,則會剩下100;若每人出90,則不多也不少。問人數(shù)、豬價各多少?”.設(shè)分別為人數(shù)、豬價,則___,___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,已知.(1)求角的大??;(2)若,求的面積.18.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.19.(12分)設(shè)為實數(shù),已知函數(shù),.(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點,求的取值范圍.20.(12分)已知動圓E與圓外切,并與直線相切,記動圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過點的直線l交曲線C于A,B兩點,若曲線C上存在點P使得,求直線l的斜率k的取值范圍.21.(12分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關(guān)系及其判定.【思路點睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.2、B【解析】

由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因為四邊形為菱形,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.3、A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.4、A【解析】

采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.5、B【解析】

易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復(fù)數(shù)的乘法、除法運算,考查學(xué)生的基本計算能力,是一道容易題.6、B【解析】

通過列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.7、C【解析】

根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運算求解的能力,屬于中檔題,8、C【解析】

對分奇數(shù)、偶數(shù)進行討論,利用誘導(dǎo)公式化簡可得.【詳解】為偶數(shù)時,;為奇數(shù)時,,則的值構(gòu)成的集合為.【點睛】本題考查三角式的化簡,誘導(dǎo)公式,分類討論,屬于基本題.9、A【解析】

圓的圓心坐標為(1,1),該圓心到直線的距離,結(jié)合弦長公式得,解得或,故選A.10、B【解析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項是由每個括號各出一項相乘組合而成的.11、C【解析】

利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.12、D【解析】

對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】

根據(jù)已知數(shù)據(jù)直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數(shù),是基礎(chǔ)題.14、【解析】

對函數(shù)零點問題等價轉(zhuǎn)化,分離參數(shù)討論交點個數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個零點,,等價于函數(shù)恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數(shù)零點問題,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,關(guān)鍵在于對函數(shù)零點問題恰當(dāng)變形,等價轉(zhuǎn)化,數(shù)形結(jié)合求解.15、【解析】

根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學(xué)成績的平均數(shù)為,解得;又乙班5名同學(xué)的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.16、10900【解析】

由題意列出方程組,求解即可.【詳解】由題意可得,解得.故答案為10900【點睛】本題主要考查二元一次方程組的解法,用消元法來求解即可,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據(jù)正弦定理可得,進而求得的值,再根據(jù)三角形的面積公式求解即可.【詳解】(1)由,得,得,由正弦定理得,顯然,同時除以,得.所以.所以.顯然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【點睛】本題主要考查了正余弦定理與面積公式在解三角形中的運用,需要根據(jù)題意用正弦定理進行邊角互化,再根據(jù)三角恒等變換進行化簡求解等.屬于中檔題.18、(1)見解析(2).【解析】

(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,,,,,所以,,.設(shè)平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.19、(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】

(1)據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性以及最值得關(guān)系即可求出的范圍【詳解】解:(1)當(dāng)時,因為,當(dāng)時,;當(dāng)時,.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設(shè),,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當(dāng)時,,所以,所以,所以當(dāng)時,函數(shù)的值域為.所以,存在,使得,即,①且當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因為函數(shù)有兩個零點,,所以.②設(shè),,則,所以函數(shù)在單調(diào)遞增,由于,所以當(dāng)時,.所以,②式中的,又由①式,得.由第(1)小題可知,當(dāng)時,函數(shù)在上單調(diào)遞減,所以,即.當(dāng)時,(?。┯捎?所以得,又因為,且函數(shù)在上單調(diào)遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個零點;(ⅱ)由于,令,設(shè),,由于時,,,所以設(shè),即.由①式,得,當(dāng)時,,且,同理可得函數(shù)在上也恰有一個零點.綜上,.【點睛】本題考查含參數(shù)的導(dǎo)數(shù)的單調(diào)性,利用導(dǎo)數(shù)求不等式恒成立問題,以及考查函數(shù)零點問題,考查學(xué)生的計算能力,是綜合性較強的題.20、(1);(2).【解析】

(1)根據(jù)拋物線的定義,結(jié)合已知條件,即可容易求得結(jié)果;(2)設(shè)出直線的方程,聯(lián)立拋物線方程,根據(jù)直線與拋物線相交則,結(jié)合由得到的斜率關(guān)系,即可求得斜率的范圍.【詳解】(1)因為動圓與圓外切,并與直線相切,所以點到點的距離比點到直線的距離大.因為圓的半徑為,所以點到點的距離等于點到直線的距離,所以圓心的軌跡為拋物線,且焦點坐標為.所以曲線的方程.(2)設(shè),,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范圍為.【點睛】本題考查由拋物線定義求拋物線方程,涉及直線與拋物線相交結(jié)合垂直關(guān)系求斜率的范圍,屬綜合中檔題.21、(1)證明見解析,;(2)【解析】

(1)利用,推出,然后利用等差數(shù)列的通項公式,即可求解;(2)由(1)知,利用裂項法,即可求解數(shù)列的前n項和.【詳解】(1)由題意,數(shù)列滿足且可得,即,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論