2025屆衡陽市重點中學高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第1頁
2025屆衡陽市重點中學高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第2頁
2025屆衡陽市重點中學高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第3頁
2025屆衡陽市重點中學高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第4頁
2025屆衡陽市重點中學高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆衡陽市重點中學高一數(shù)學第二學期期末質量跟蹤監(jiān)視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若不等式對一切恒成立,則實數(shù)的最大值為()A.0 B.2 C. D.32.在中,已知是邊上一點,,,則等于()A. B. C. D.3.在△ABC中,若asinA+bsinB<csinC,則△ABC是()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.都有可能4.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B. C. D.5.已知,,則等于()A. B. C. D.6.已知函數(shù),且此函數(shù)的圖象如圖所示,由點的坐標是()A. B. C. D.7.在中,已知,,若點在斜邊上,,則的值為().A.6 B.12 C.24 D.488.已知:,,若函數(shù)和有完全相同的對稱軸,則不等式的解集是A. B.C. D.9.已知正實數(shù)滿足,則的最大值為()A.2 B. C.3 D.10.化簡的結果是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某學校高一年級舉行選課培訓活動,共有1024名學生、家長、老師參加,其中家長256人.學校按學生、家長、老師分層抽樣,從中抽取64人,進行某問卷調查,則抽到的家長有___人12.若直線與圓有公共點,則實數(shù)的取值范圍是__________.13.將二進制數(shù)110轉化為十進制數(shù)的結果是_____________.14.數(shù)列滿足,,,則數(shù)列的通項公式______.15.不等式的解集是_________________16.的值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知定義在上的函數(shù)的圖象如圖所示(1)求函數(shù)的解析式;(2)寫出函數(shù)的單調遞增區(qū)間(3)設不相等的實數(shù),,且,求的值.18.已知函數(shù).(1)求的值;(2)若,求的取值范圍.19.已知海島在海島北偏東,,相距海里,物體甲從海島以海里/小時的速度沿直線向海島移動,同時物體乙從海島沿著海島北偏西方向以海里/小時的速度移動.(1)問經(jīng)過多長時間,物體甲在物體乙的正東方向;(2)求甲從海島到達海島的過程中,甲、乙兩物體的最短距離.20.求下列各式的值:(1)求的值;(2)已知,,且,,求的值.21.已知向量,.(Ⅰ)求;(Ⅱ)若向量與垂直,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

采用參變分離法對不等式變形,然后求解變形后的函數(shù)的值域,根據(jù)參數(shù)與新函數(shù)的關系求解參數(shù)最值.【詳解】因為不等式對一切恒成立,所以對一切,,即恒成立.令.易知在內為增函數(shù).所以當時,,所以的最大值是.故選C.【點睛】常見的求解參數(shù)范圍的方法:(1)分類討論法(從臨界值、特殊值出發(fā));(2)參變分離法(考慮新函數(shù)與參數(shù)的關系).2、A【解析】

利用向量的減法將3,進行分解,然后根據(jù)條件,進行對比即可得到結論【詳解】∵3,∴33,即43,則,∵λ,∴λ,故選A.【點睛】本題主要考查向量的基本定理的應用,根據(jù)向量的減法法則進行分解是解決本題的關鍵.3、A【解析】

由正弦定理化已知條件為邊的關系,然后由余弦定理可判斷角的大?。驹斀狻俊遖sinA+bsinB<csinC,∴,∴,∴為鈍角.故選A.【點睛】本題考查正弦定理與余弦定理,考查三角形形狀的判斷,屬于基礎題.4、A【解析】

若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質5、D【解析】

通過化簡可得,再根據(jù),可得,利用同角三角函數(shù)可得,則答案可得.【詳解】解:,又,得,即,又,且,解得,,故選:D.【點睛】本題考查三角恒等變形的化簡和求值,是中檔題.6、B【解析】

先由函數(shù)圖象與軸的相鄰兩個交點確定該函數(shù)的最小正周期,并利用周期公式求出的值,再將點代入函數(shù)解析式,并結合函數(shù)在該點附近的單調性求出的值,即可得出答案?!驹斀狻拷猓河蓤D象可得函數(shù)的周期∴,得,將代入可得,∴(注意此點位于函數(shù)減區(qū)間上)∴由可得,∴點的坐標是,故選:B.【點睛】本題考查利用圖象求三角函數(shù)的解析式,其步驟如下:①求、:,;②求:利用一些關鍵點求出最小正周期,再由公式求出;③求:代入關鍵點求出初相,如果代對稱中心點要注意附近的單調性。7、C【解析】試題分析:因為,,,所以==+==,故選C.考點:1、平面向量的加減運算;2、平面向量的數(shù)量積運算.8、B【解析】

,所以因此,選B.9、B【解析】

由,然后由基本不等式可得最大值.【詳解】,當且僅當,即時,等號成立.∴所求最大值為.故選:B.【點睛】本題考查用基本不等式求最值,注意基本不等式求最值的條件:一正二定三相等.10、A【解析】

根據(jù)平面向量加法及數(shù)乘的幾何意義,即可求解,得到答案.【詳解】根據(jù)平面向量加法及數(shù)乘的幾何意義,可得,故選A.【點睛】本題主要考查了平面向量的加法法則的應用,其中解答中熟記平面向量的加法法則是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、16【解析】

利用分層抽樣的性質,直接計算,即可求得,得到答案.【詳解】由題意,可知共有1024名學生、家長、老師參加,其中家長256人,通過分層抽樣從中抽取64人,進行某問卷調查,則抽到的家長人數(shù)為人.故答案為16【點睛】本題主要考查了分層抽樣的應用,其中解答中熟記分層抽樣的概念和性質,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、【解析】

直線與圓有交點,則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數(shù)的取值范圍是.【點睛】本題考查直線與圓的位置關系,點到直線距離公式是常用方法.13、6【解析】

將二進制數(shù)從右開始,第一位數(shù)字乘以2的0次冪,第二位數(shù)字乘以2的1次冪,以此類推,進行計算即可.【詳解】,故答案為:6.【點睛】本題考查進位制,解題關鍵是了解不同進制數(shù)之間的換算法則,屬于基礎題.14、【解析】

由題意得出,利用累加法可求出.【詳解】數(shù)列滿足,,,,因此,.故答案為:.【點睛】本題考查利用累加法求數(shù)列的通項,解題時要注意累加法對數(shù)列遞推公式的要求,考查計算能力,屬于中等題.15、【解析】

可先求出一元二次方程的兩根,即可得到不等式的解集.【詳解】由于的兩根分別為:,,因此不等式的解集是.【點睛】本題主要考查一元二次不等式的求解,難度不大.16、【解析】

直接利用誘導公式化簡求值.【詳解】,故答案為:.【點睛】本題考查誘導公式的應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3);【解析】

(1)根據(jù)函數(shù)的最值可得,周期可得,代入最高點的坐標可得,從而可得解析式;(2)利用正弦函數(shù)的遞增區(qū)間可解得;(3)利用在內的解就是和,即可得到結果.【詳解】(1)由函數(shù)的圖象可得,又因為函數(shù)的周期,所以,因為函數(shù)的圖象經(jīng)過點,即,所以,即,所以.(2)由,可得,可得函數(shù)的單調遞增區(qū)間為:,(3)因為,所以,又因為可得,所以或,解得或,、因為且,,所以.【點睛】本題考查了由圖象求解析式,考查了正弦函數(shù)的遞增區(qū)間,考查了由函數(shù)值求角,屬于中檔題.18、(1);(2)【解析】

(1)將)化簡為,代入從而求得結果.(2)由,得,從而確定的范圍.【詳解】(1)(2)由,得解得,,即的取值范圍是【點睛】本題主要考查三角函數(shù)的化簡求值,不等式的求解,意在考查學生的運算能力和分析能力,難度不大.19、(1)小時;(2)海里.【解析】

試題分析:(1)設經(jīng)過小時,物體甲在物體乙的正東方向,因為小時,所以.則物體甲與海島的距離為海里,物體乙與海島距離為海里.在中由正弦定理可求得的值.(2)在中用余弦定理求,再根據(jù)二次函數(shù)求的最小值.試題解析:解:(1)設經(jīng)過小時,物體甲在物體乙的正東方向.如圖所示,物體甲與海島的距離為海里,物體乙與海島距離為海里,,中,由正弦定理得:,即,則.(2)由(1)題設,,,由余弦定理得:∵,∴當時,海里.考點:1正弦定理;2余弦定理;3二次函數(shù)求最值.20、(1)(2)【解析】

(1)利用二倍角公式以及輔助角公式化簡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論