2024屆重慶市榮昌清流鎮(zhèn)民族中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第1頁(yè)
2024屆重慶市榮昌清流鎮(zhèn)民族中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第2頁(yè)
2024屆重慶市榮昌清流鎮(zhèn)民族中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第3頁(yè)
2024屆重慶市榮昌清流鎮(zhèn)民族中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第4頁(yè)
2024屆重慶市榮昌清流鎮(zhèn)民族中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆重慶市榮昌清流鎮(zhèn)民族中學(xué)中考數(shù)學(xué)考前最后一卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠BED的正切值等于()A. B. C.2 D.2.如果將拋物線向下平移1個(gè)單位,那么所得新拋物線的表達(dá)式是A. B. C. D.3.我國(guó)作家莫言獲得諾貝爾文學(xué)獎(jiǎng)之后,他的代表作品《蛙》的銷(xiāo)售量就比獲獎(jiǎng)之前增長(zhǎng)了180倍,達(dá)到2100000冊(cè).把2100000用科學(xué)記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×1064.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且?2≤x≤1時(shí),y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.15.1.桌面上放置的幾何體中,主視圖與左視圖可能不同的是()A.圓柱B.正方體C.球D.直立圓錐6.某排球隊(duì)名場(chǎng)上隊(duì)員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊(duì)員換下場(chǎng)上身高為的隊(duì)員,與換人前相比,場(chǎng)上隊(duì)員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大7.設(shè)x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為()A.6 B.8 C.14 D.168.如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°9.下列關(guān)于x的方程一定有實(shí)數(shù)解的是()A. B.C. D.10.有m輛客車(chē)及n個(gè)人,若每輛客車(chē)乘40人,則還有10人不能上車(chē),若每輛客車(chē)乘43人,則只有1人不能上車(chē),有下列四個(gè)等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④二、填空題(共7小題,每小題3分,滿分21分)11.若關(guān)于的不等式組無(wú)解,則的取值范圍是________.12.如圖,正方形ABCD的邊長(zhǎng)為2,分別以A、D為圓心,2為半徑畫(huà)弧BD、AC,則圖中陰影部分的面積為_(kāi)____.13.已知反比例函數(shù)y=在第二象限內(nèi)的圖象如圖,經(jīng)過(guò)圖象上兩點(diǎn)A、E分別引y軸與x軸的垂線,交于點(diǎn)C,且與y軸與x軸分別交于點(diǎn)M、B.連接OC交反比例函數(shù)圖象于點(diǎn)D,且,連接OA,OE,如果△AOC的面積是15,則△ADC與△BOE的面積和為_(kāi)____.14.桌上擺著一個(gè)由若干個(gè)相同正方體組成的幾何體,其主視圖和左視圖如圖所示,這個(gè)幾何體最多可以由___________個(gè)這樣的正方體組成.15.若一個(gè)多邊形每個(gè)內(nèi)角為140°,則這個(gè)多邊形的邊數(shù)是________.16.若點(diǎn)A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函數(shù)y=(k為常數(shù))的圖象上,則y1、y2、y3的大小關(guān)系為_(kāi)_______.17.不等式組的最大整數(shù)解是__________.三、解答題(共7小題,滿分69分)18.(10分)圖1是一商場(chǎng)的推拉門(mén),已知門(mén)的寬度米,且兩扇門(mén)的大小相同(即),將左邊的門(mén)繞門(mén)軸向里面旋轉(zhuǎn),將右邊的門(mén)繞門(mén)軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時(shí)與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)19.(5分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長(zhǎng).20.(8分)某商場(chǎng)計(jì)劃購(gòu)進(jìn)、兩種新型節(jié)能臺(tái)燈共盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如表所示:()若商場(chǎng)預(yù)計(jì)進(jìn)貨款為元,則這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?()若商場(chǎng)規(guī)定型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)型臺(tái)燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷(xiāo)售完這批臺(tái)燈時(shí)獲利最多?此時(shí)利潤(rùn)為多少元?21.(10分)我國(guó)古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“繩索量竿”問(wèn)題:“一條竿子一條索,索比竿子長(zhǎng)一托,折回索子卻量竿,卻比竿子短一托”其大意為:現(xiàn)有一根竿和一根繩索,用繩索去量竿,繩索比竿長(zhǎng)5尺;如果將繩索對(duì)半折后再去量竿,就比竿短5尺.求繩索長(zhǎng)和竿長(zhǎng).22.(10分)如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的,連接BE,CF相交于點(diǎn)D.求證:BE=CF;當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).23.(12分)已知:如圖,在□ABCD中,點(diǎn)G為對(duì)角線AC的中點(diǎn),過(guò)點(diǎn)G的直線EF分別交邊AB、CD于點(diǎn)E、F,過(guò)點(diǎn)G的直線MN分別交邊AD、BC于點(diǎn)M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當(dāng)四邊形ENFM為矩形時(shí),求證:BE=BN.24.(14分)如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一老人坐在MN這層臺(tái)階上曬太陽(yáng).(取1.73)(1)求樓房的高度約為多少米?(2)過(guò)了一會(huì)兒,當(dāng)α=45°時(shí),問(wèn)老人能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)同弧或等弧所對(duì)的圓周角相等可知∠BED=∠BAD,再結(jié)合圖形根據(jù)正切的定義進(jìn)行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點(diǎn)睛】本題考查了圓周角定理(同弧或等弧所對(duì)的圓周角相等)和正切的概念,正確得出相等的角是解題關(guān)鍵.2、C【解析】

根據(jù)向下平移,縱坐標(biāo)相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個(gè)單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.3、D【解析】2100000=2.1×106.點(diǎn)睛:對(duì)于一個(gè)絕對(duì)值較大的數(shù),用科學(xué)記數(shù)法寫(xiě)成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).4、D【解析】

先求出二次函數(shù)的對(duì)稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開(kāi)口向上a>0,然后由-2≤x≤1時(shí),y的最大值為9,可得x=1時(shí),y=9,即可求出a.【詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對(duì)稱軸是直線x=-2a2a∵當(dāng)x≥2時(shí),y隨x的增大而增大,∴a>0,∵-2≤x≤1時(shí),y的最大值為9,∴x=1時(shí),y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-b2a,4ac-b24a),對(duì)稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當(dāng)a>0時(shí),拋物線y=ax2+bx+c(a≠0)的開(kāi)口向上,x<-b2a時(shí),y隨x的增大而減??;x>-b2a時(shí),y隨x的增大而增大;x=-b2a時(shí),y取得最小值4ac-b24a5、B【解析】試題分析:根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上面看得到的圖形是俯視圖,正方體主視圖與左視圖可能不同,故選B.考點(diǎn):簡(jiǎn)單幾何體的三視圖.6、A【解析】分析:根據(jù)平均數(shù)的計(jì)算公式進(jìn)行計(jì)算即可,根據(jù)方差公式先分別計(jì)算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊(duì)員身高的平均數(shù)為==188,方差為S2==;換人后6名隊(duì)員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點(diǎn)睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.7、C【解析】

根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=-5,再變形x12+x22得到(x1+x2)2-2x1?x2,然后利用代入計(jì)算即可.【詳解】∵一元二次方程x2-2x-5=0的兩根是x1、x2,

∴x1+x2=2,x1?x2=-5,

∴x12+x22=(x1+x2)2-2x1?x2=22-2×(-5)=1.

故選C.【點(diǎn)睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-,x1?x2=.8、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結(jié)合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點(diǎn)D沿EF折疊后與點(diǎn)B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點(diǎn)睛:這是一道有關(guān)矩形折疊的問(wèn)題,熟悉“矩形的四個(gè)內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關(guān)鍵.9、A【解析】

根據(jù)一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個(gè)不相等的實(shí)數(shù)根,符合題意;

B.a(chǎn)x=3中當(dāng)a=0時(shí),方程無(wú)解,不符合題意;

C.由可解得不等式組無(wú)解,不符合題意;

D.有增根x=1,此方程無(wú)解,不符合題意;

故選A.【點(diǎn)睛】本題主要考查方程的解,解題的關(guān)鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.10、D【解析】試題分析:首先要理解清楚題意,知道總的客車(chē)數(shù)量及總的人數(shù)不變,然后采用排除法進(jìn)行分析從而得到正確答案.解:根據(jù)總?cè)藬?shù)列方程,應(yīng)是40m+10=43m+1,①錯(cuò)誤,④正確;根據(jù)客車(chē)數(shù)列方程,應(yīng)該為,②錯(cuò)誤,③正確;所以正確的是③④.故選D.考點(diǎn):由實(shí)際問(wèn)題抽象出一元一次方程.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

首先解每個(gè)不等式,然后根據(jù)不等式無(wú)解,即兩個(gè)不等式的解集沒(méi)有公共解即可求得.【詳解】,

解①得:x>a+3,

解②得:x<1.

根據(jù)題意得:a+3≥1,

解得:a≥-2.

故答案是:a≥-2.【點(diǎn)睛】本題考查了一元一次不等式組的解,解題的關(guān)鍵是熟練掌握解一元一次不等式組的步驟..12、2﹣【解析】

過(guò)點(diǎn)F作FE⊥AD于點(diǎn)E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長(zhǎng),由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過(guò)點(diǎn)F作FE⊥AD于點(diǎn)E,∵正方形ABCD的邊長(zhǎng)為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點(diǎn)睛】本題考查了扇形的面積公式和長(zhǎng)方形性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)圖形的對(duì)稱性分析,主要考查學(xué)生的計(jì)算能力.13、1.【解析】連結(jié)AD,過(guò)D點(diǎn)作DG∥CM,∵,△AOC的面積是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面積是5,△ODF的面積是15×=,∴四邊形AMGF的面積=,∴△BOE的面積=△AOM的面積=×=12,∴△ADC與△BOE的面積和為5+12=1,故答案為:1.14、1【解析】

主視圖、左視圖是分別從物體正面、左面看,所得到的圖形.【詳解】易得第一層最多有9個(gè)正方體,第二層最多有4個(gè)正方體,所以此幾何體共有1個(gè)正方體.故答案為1.15、九【解析】

根據(jù)多邊形的內(nèi)角和定理:180°?(n-2)進(jìn)行求解即可.【詳解】由題意可得:180°(n?2)=140°n,解得n=9,故多邊形是九邊形.故答案為9.【點(diǎn)睛】本題考查了多邊形的內(nèi)角和定理,解題的關(guān)鍵是熟練的掌握多邊形的內(nèi)角和定理.16、y2<y1<y2【解析】分析:設(shè)t=k2﹣2k+2,配方后可得出t>1,利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出y1、y2、y2的值,比較后即可得出結(jié)論.詳解:設(shè)t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵點(diǎn)A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函數(shù)y=(k為常數(shù))的圖象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案為:y2<y1<y2.點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出y1、y2、y2的值是解題的關(guān)鍵.17、【解析】

先求出每個(gè)不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,1,則該不等式組的最大整數(shù)解是x=1.故答案為:1.【點(diǎn)睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.三、解答題(共7小題,滿分69分)18、1.4米.【解析】

過(guò)點(diǎn)B作BE⊥AD于點(diǎn)E,過(guò)點(diǎn)C作CF⊥AD于點(diǎn)F,延長(zhǎng)FC到點(diǎn)M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長(zhǎng)度,進(jìn)而可得出EF的長(zhǎng)度,再在Rt△MEF中利用勾股定理即可求出EM的長(zhǎng),此題得解.【詳解】過(guò)點(diǎn)B作BE⊥AD于點(diǎn)E,過(guò)點(diǎn)C作CF⊥AD于點(diǎn)F,延長(zhǎng)FC到點(diǎn)M,使得BE=CM,如圖所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四邊形BEMC為平行四邊形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,F(xiàn)M=CF+CM=1.3,∴EM=≈1.4,∴B與C之間的距離約為1.4米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用、勾股定理以及平行四邊形的判定與性質(zhì),正確添加輔助線,構(gòu)造直角三角形,利用勾股定理求出BC的長(zhǎng)度是解題的關(guān)鍵.19、(1)證明見(jiàn)解析;(2)CD的長(zhǎng)為2.【解析】

(1)首先證得△ADE≌△CDE,由全等三角形的性質(zhì)可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根據(jù)30°的性質(zhì)和勾股定理可求出EF和DF的長(zhǎng),在Rt△CEF中,根據(jù)勾股定理可求出CF的長(zhǎng),從而可求CD的長(zhǎng).【詳解】證明:(1)在△ADE與△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四邊形ABCD為平行四邊形,∵AD=CD,∴四邊形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),平行線的性質(zhì),菱形的判定,含30°的直角三角形的性質(zhì),勾股定理.證明AD=BC是解(1)的關(guān)鍵,作EF⊥CD于F,構(gòu)造直角三角形是解(2)的關(guān)鍵.20、(1)購(gòu)進(jìn)型臺(tái)燈盞,型臺(tái)燈25盞;(2)當(dāng)商場(chǎng)購(gòu)進(jìn)型臺(tái)燈盞時(shí),商場(chǎng)獲利最大,此時(shí)獲利為元.【解析】試題分析:(1)設(shè)商場(chǎng)應(yīng)購(gòu)進(jìn)A型臺(tái)燈x盞,然后根據(jù)關(guān)系:商場(chǎng)預(yù)計(jì)進(jìn)貨款為3500元,列方程可解決問(wèn)題;(2)設(shè)商場(chǎng)銷(xiāo)售完這批臺(tái)燈可獲利y元,然后求出y與x的函數(shù)關(guān)系式,然后根據(jù)一次函數(shù)的性質(zhì)和自變量的取值范圍可確定獲利最多時(shí)的方案.試題解析:解:(1)設(shè)商場(chǎng)應(yīng)購(gòu)進(jìn)A型臺(tái)燈x盞,則B型臺(tái)燈為(100﹣x)盞,根據(jù)題意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:應(yīng)購(gòu)進(jìn)A型臺(tái)燈75盞,B型臺(tái)燈25盞;(2)設(shè)商場(chǎng)銷(xiāo)售完這批臺(tái)燈可獲利y元,則y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)A型臺(tái)燈數(shù)量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25時(shí),y取得最大值,為﹣5×25+2000=1875(元)答:商場(chǎng)購(gòu)進(jìn)A型臺(tái)燈25盞,B型臺(tái)燈75盞,銷(xiāo)售完這批臺(tái)燈時(shí)獲利最多,此時(shí)利潤(rùn)為1875元.考點(diǎn):1.一元一次方程的應(yīng)用;2.一次函數(shù)的應(yīng)用.21、繩索長(zhǎng)為20尺,竿長(zhǎng)為15尺.【解析】

設(shè)索長(zhǎng)為x尺,竿子長(zhǎng)為y尺,根據(jù)“索比竿子長(zhǎng)一托,對(duì)折索子來(lái)量竿,卻比竿子短一托”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.【詳解】設(shè)繩索長(zhǎng)、竿長(zhǎng)分別為尺,尺,依題意得:解得:,.答:繩索長(zhǎng)為20尺,竿長(zhǎng)為15尺.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.22、(1)證明見(jiàn)解析(2)-1【解析】

(1)先由旋轉(zhuǎn)的性質(zhì)得AE=AB,AF=AC,∠EAF=∠BAC,則∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,從而得出BE=CF;(2)由菱形的性質(zhì)得到DE=AE=AC=AB=1,AC∥DE,根據(jù)等腰三角形的性質(zhì)得∠AEB=∠ABE,根據(jù)平行線得性質(zhì)得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判斷△ABE為等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【詳解】(1)∵△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,△ACF≌△ABEBE=CF.(2)∵四邊形ACDE為菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE為等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=.考點(diǎn):1.旋轉(zhuǎn)的性質(zhì);2.勾股定理;3.菱形的性質(zhì).23、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】分析:(1)由已知條件易得∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論