廣東廣州天河中學(xué)高三第二次調(diào)研新高考數(shù)學(xué)試卷及答案解析_第1頁(yè)
廣東廣州天河中學(xué)高三第二次調(diào)研新高考數(shù)學(xué)試卷及答案解析_第2頁(yè)
廣東廣州天河中學(xué)高三第二次調(diào)研新高考數(shù)學(xué)試卷及答案解析_第3頁(yè)
廣東廣州天河中學(xué)高三第二次調(diào)研新高考數(shù)學(xué)試卷及答案解析_第4頁(yè)
廣東廣州天河中學(xué)高三第二次調(diào)研新高考數(shù)學(xué)試卷及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東廣州天河中學(xué)高三第二次調(diào)研新高考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù),則()A. B. C. D.2.已知滿足,則的取值范圍為()A. B. C. D.3.棱長(zhǎng)為2的正方體內(nèi)有一個(gè)內(nèi)切球,過(guò)正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長(zhǎng)為()A. B. C. D.14.已知集合,則()A. B.C. D.5.某學(xué)校組織學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.606.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線與直線AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿足條件的實(shí)數(shù)a,b7.公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.128.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為()A. B. C. D.9.等差數(shù)列中,已知,且,則數(shù)列的前項(xiàng)和中最小的是()A.或 B. C. D.10.函數(shù)的圖像大致為().A. B.C. D.11.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.12.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.14.若函數(shù)為偶函數(shù),則.15.設(shè),則除以的余數(shù)是______.16.若滿足,則目標(biāo)函數(shù)的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線和直線的極坐標(biāo)方程分別是()和(),其中().(1)寫(xiě)出曲線的直角坐標(biāo)方程;(2)設(shè)直線和直線分別與曲線交于除極點(diǎn)的另外點(diǎn),,求的面積最小值.18.(12分)如圖,三棱柱的所有棱長(zhǎng)均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.19.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.20.(12分)已知函數(shù),,設(shè).(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)設(shè)方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導(dǎo)函數(shù))21.(12分)某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示.據(jù)統(tǒng)計(jì),該公司每年為這一萬(wàn)名參保人員支出的各種費(fèi)用為一百萬(wàn)元.年齡(單位:歲)保費(fèi)(單位:元)(1)用樣本的頻率分布估計(jì)總體分布,為使公司不虧本,求精確到整數(shù)時(shí)的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項(xiàng)疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險(xiǎn)公司補(bǔ)貼治療費(fèi)元.某老人年齡歲,若購(gòu)買(mǎi)該項(xiàng)保險(xiǎn)(取中的).針對(duì)此疾病所支付的費(fèi)用為元;若沒(méi)有購(gòu)買(mǎi)該項(xiàng)保險(xiǎn),針對(duì)此疾病所支付的費(fèi)用為元.試比較和的期望值大小,并判斷該老人購(gòu)買(mǎi)此項(xiàng)保險(xiǎn)是否劃算?22.(10分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

利用復(fù)數(shù)除法、加法運(yùn)算,化簡(jiǎn)求得,再求得【詳解】,故.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)的除法運(yùn)算、加法運(yùn)算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.2、C【解析】

設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過(guò)點(diǎn)的直線平行于軸時(shí),此時(shí)成立;取所有負(fù)值都成立;當(dāng)過(guò)點(diǎn)時(shí),取正值中的最小值,,此時(shí);故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問(wèn)題,解題時(shí)作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對(duì)于直線斜率要注意斜率不存在的直線是否存在.3、C【解析】

連結(jié)并延長(zhǎng)PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長(zhǎng).【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長(zhǎng)PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長(zhǎng)的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.4、C【解析】

由題意和交集的運(yùn)算直接求出.【詳解】∵集合,∴.故選:C.【點(diǎn)睛】本題考查了集合的交集運(yùn)算.集合進(jìn)行交并補(bǔ)運(yùn)算時(shí),常借助數(shù)軸求解.注意端點(diǎn)處是實(shí)心圓還是空心圓.5、D【解析】

根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計(jì)算成績(jī)低于60分的頻率,再根據(jù)樣本容量求出班級(jí)人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,也考查了頻率的應(yīng)用問(wèn)題,屬于基礎(chǔ)題6、A【解析】

求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線平行的條件:斜率相等,化簡(jiǎn)可得,為任意非零實(shí)數(shù).【詳解】依題意,在點(diǎn)處的切線與直線AB平行,即有,所以,由于對(duì)任意上式都成立,可得,為非零實(shí)數(shù).故選:A【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用,求切線的斜率,考查兩點(diǎn)的斜率公式,以及化簡(jiǎn)運(yùn)算能力,屬于中檔題.7、C【解析】

由開(kāi)始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻浚蔬xC.【點(diǎn)睛】框圖問(wèn)題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。8、C【解析】

根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡(jiǎn)后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡(jiǎn)得;由橢圓定義知的周長(zhǎng)為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點(diǎn)睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.9、C【解析】

設(shè)公差為,則由題意可得,解得,可得.令

,可得

當(dāng)時(shí),,當(dāng)時(shí),,由此可得數(shù)列前項(xiàng)和中最小的.【詳解】解:等差數(shù)列中,已知,且,設(shè)公差為,

則,解得

,.

,可得,故當(dāng)時(shí),,當(dāng)時(shí),,

故數(shù)列前項(xiàng)和中最小的是.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式的應(yīng)用,屬于中檔題.10、A【解析】

本題采用排除法:由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無(wú)限接近于0時(shí),排除選項(xiàng)B;【詳解】對(duì)于選項(xiàng)D:由題意可得,令函數(shù),則,;即.故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對(duì)于選項(xiàng)B:當(dāng),且無(wú)限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A【點(diǎn)睛】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號(hào)的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.11、D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.12、B【解析】

先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.【點(diǎn)睛】本題考查向量的幾何意義,考查投影公式的應(yīng)用,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、55【解析】

由求出.由,可得,兩式相減,可得數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時(shí),,當(dāng)時(shí),由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.14、1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點(diǎn):函數(shù)的奇偶性.【方法點(diǎn)晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,取.15、1【解析】

利用二項(xiàng)式定理得到,將89寫(xiě)成1+88,然后再利用二項(xiàng)式定理展開(kāi)即可.【詳解】,因展開(kāi)式中后面10項(xiàng)均有88這個(gè)因式,所以除以的余數(shù)為1.故答案為:1【點(diǎn)睛】本題考查二項(xiàng)式定理的綜合應(yīng)用,涉及余數(shù)的問(wèn)題,解決此類(lèi)問(wèn)題的關(guān)鍵是靈活構(gòu)造二項(xiàng)式,并將它展開(kāi)分析,本題是一道基礎(chǔ)題.16、-1【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過(guò)點(diǎn)時(shí),直線在軸上的截距最大,由得即,則有最大值,故答案為.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)16.【解析】

(1)將極坐標(biāo)方程化為直角坐標(biāo)方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標(biāo)方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標(biāo)方程為:;(2),即同理∴當(dāng)且僅當(dāng),即()時(shí)取等號(hào)即的面積最小值為16【點(diǎn)睛】本題主要考查了極坐標(biāo)方程化直角坐標(biāo)方程以及極坐標(biāo)的應(yīng)用,屬于中檔題.18、(Ⅰ)見(jiàn)解析(Ⅱ)【解析】

(Ⅰ)連接交于點(diǎn),連接,由于平面,得出,根據(jù)線線位置關(guān)系得出,利用線面垂直的判定和性質(zhì)得出,結(jié)合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標(biāo)系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點(diǎn),連接,則平面平面,平面,,為的中點(diǎn),為的中點(diǎn),平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標(biāo)系,設(shè)則,,,,,設(shè)平面的法向量為,則,取得,設(shè)直線與平面所成角為,直線與平面所成角的余弦值為.【點(diǎn)睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.19、(1)見(jiàn)解析(2)【解析】

(1)取中點(diǎn),連接,,通過(guò)證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點(diǎn),連接,,由已知可得,,,∵側(cè)面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點(diǎn)睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問(wèn)題時(shí),常建立空間直角坐標(biāo)系,通過(guò)求面的法向量、線的方向向量,繼而求解.特別地,對(duì)于線面角問(wèn)題,法向量與方向向量的余角才是所求的線面角,即兩個(gè)向量夾角的余弦值為線面角的正弦值.20、(1)在上單調(diào)遞增,在上單調(diào)遞減.(2)見(jiàn)解析【解析】

(1)求出導(dǎo)函數(shù),由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數(shù)的,再求出,由的兩根是,得,計(jì)算,代入后可得結(jié)論.【詳解】解:,函數(shù)的定義域?yàn)椋?)當(dāng)時(shí),,由

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論