湖北省宜昌市長(zhǎng)陽縣一中新高考模擬試卷(數(shù)學(xué)試題理)試卷_第1頁
湖北省宜昌市長(zhǎng)陽縣一中新高考模擬試卷(數(shù)學(xué)試題理)試卷_第2頁
湖北省宜昌市長(zhǎng)陽縣一中新高考模擬試卷(數(shù)學(xué)試題理)試卷_第3頁
湖北省宜昌市長(zhǎng)陽縣一中新高考模擬試卷(數(shù)學(xué)試題理)試卷_第4頁
湖北省宜昌市長(zhǎng)陽縣一中新高考模擬試卷(數(shù)學(xué)試題理)試卷_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省宜昌市長(zhǎng)陽縣一中新高考模擬試卷(數(shù)學(xué)試題理)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.2.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.一個(gè)空間幾何體的正視圖是長(zhǎng)為4,寬為的長(zhǎng)方形,側(cè)視圖是邊長(zhǎng)為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.4.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.125.已知全集為,集合,則()A. B. C. D.6.已知集合,集合,那么等于()A. B. C. D.7.在鈍角中,角所對(duì)的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.8.如圖,在中,,且,則()A.1 B. C. D.9.運(yùn)行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.10.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.11.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.612.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,已知圓及點(diǎn),設(shè)點(diǎn)是圓上的動(dòng)點(diǎn),在中,若的角平分線與相交于點(diǎn),則的取值范圍是_______.14.若實(shí)數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.15.已知數(shù)列滿足,且,則______.16.若滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域;(2)的角的對(duì)邊分別為且,,求邊上的高的最大值.18.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個(gè)實(shí)數(shù)解、、(),求證:.19.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.20.(12分)在△ABC中,角所對(duì)的邊分別為向量,向量,且.(1)求角的大??;(2)求的最大值.21.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時(shí),恒成立,求的取值范圍.22.(10分)在極坐標(biāo)系中,直線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點(diǎn)的直角坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

畫出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時(shí),點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時(shí).所以的取值范圍是.故選:B【點(diǎn)睛】本小題考查線性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).2、A【解析】

根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點(diǎn)睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.3、B【解析】

由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點(diǎn)睛】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.4、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來,繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.5、D【解析】

對(duì)于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對(duì)于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.6、A【解析】

求出集合,然后進(jìn)行并集的運(yùn)算即可.【詳解】∵,,∴.故選:A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運(yùn)算,屬于基礎(chǔ)題.7、B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因?yàn)?,所以因?yàn)樗裕?,,時(shí)故選:【點(diǎn)睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.8、C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點(diǎn)共線,又得到一個(gè)關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點(diǎn)睛】此題考查的是平面向量基本定理的有關(guān)知識(shí),結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.9、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運(yùn)行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時(shí)要輸出的值為99.此時(shí).故選:C.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.10、D【解析】

設(shè),則,小正六邊形的邊長(zhǎng)為,利用余弦定理可得大正六邊形的邊長(zhǎng)為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長(zhǎng)為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長(zhǎng)為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.11、A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.12、C【解析】

根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點(diǎn)睛】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由角平分線成比例定理推理可得,進(jìn)而設(shè)點(diǎn)表示向量構(gòu)建方程組表示點(diǎn)P坐標(biāo),代入圓C方程即可表示動(dòng)點(diǎn)Q的軌跡方程,再由將所求視為該圓上的點(diǎn)與原點(diǎn)間的距離,所以其最值為圓心到原點(diǎn)的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因?yàn)锳Q是的角平分線,由角平分線成比例定理可知,所以.設(shè)點(diǎn),點(diǎn),即,則,所以.又因?yàn)辄c(diǎn)是圓上的動(dòng)點(diǎn),則,故點(diǎn)Q的運(yùn)功軌跡是以為圓心為半徑的圓,又即為該圓上的點(diǎn)與原點(diǎn)間的距離,因?yàn)?,所以故答案為:【點(diǎn)睛】本題考查與圓有關(guān)的距離的最值問題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動(dòng)點(diǎn)的軌跡方程,屬于中檔題.14、【解析】

畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過點(diǎn)時(shí),取得最大值7;過點(diǎn)時(shí),取得最小值2,所以.【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對(duì)應(yīng)的基準(zhǔn)直線;然后通過平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.15、【解析】

數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列定義,考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了等比數(shù)列的通項(xiàng)公式,是中檔題.16、4【解析】

作出可行域如圖所示:由,解得.目標(biāo)函數(shù),即為,平移斜率為-1的直線,經(jīng)過點(diǎn)時(shí),.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)由題意利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數(shù),當(dāng)時(shí),,.(2)中,,∴.由余弦定理可得,當(dāng)且僅當(dāng)時(shí),取等號(hào),即的最大值為3.再根據(jù),故當(dāng)取得最大值3時(shí),取得最大值為.【點(diǎn)睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當(dāng)?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.18、(1)①當(dāng)時(shí),在單調(diào)遞增,②當(dāng)時(shí),單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見解析【解析】

(1)先求解導(dǎo)函數(shù),然后對(duì)參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),①當(dāng)時(shí),恒成立,則在單調(diào)遞增②當(dāng)時(shí),令得,解得,又,∴∴當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個(gè)實(shí)數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒有證明,扣3分)關(guān)于的證明:(1)且時(shí),(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點(diǎn)睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對(duì)于含參函數(shù)單調(diào)性的分析,可通過分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達(dá)到證明不等式的目的.19、(1)見解析(2)【解析】

(1)取中點(diǎn),連接,,通過證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點(diǎn),連接,,由已知可得,,,∵側(cè)面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點(diǎn)睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時(shí),常建立空間直角坐標(biāo)系,通過求面的法向量、線的方向向量,繼而求解.特別地,對(duì)于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個(gè)向量夾角的余弦值為線面角的正弦值.20、(1)(2)2【解析】

(1)轉(zhuǎn)化條件得,進(jìn)而可得,即可得解;(2)由化簡(jiǎn)可得,由結(jié)合三角函數(shù)的性質(zhì)即可得解.【詳解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值為2.【點(diǎn)睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應(yīng)用,考查了三角函數(shù)的性質(zhì),屬于中檔題.21、(1)見解析;(2).【解析】

(1)對(duì)求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時(shí),轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個(gè)不同的零點(diǎn),,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因?yàn)?,,所以,存在使得,即.所以,?dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當(dāng),即時(shí),為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當(dāng),即時(shí),有兩個(gè)不同的零點(diǎn),,且,即,若時(shí),為減函數(shù),(*)若時(shí),為增函數(shù),所以的最小值為.注意到時(shí),,且此時(shí),(?。┊?dāng)時(shí),,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當(dāng)時(shí),,所以,所以由(*)知時(shí),為減函數(shù),所以,不滿足時(shí),恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論