




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.2.已知的面積是,,,則()A.5 B.或1 C.5或1 D.3.若集合,則=()A. B. C. D.4.在中,,則()A. B. C. D.5.已知定義在上的奇函數滿足,且當時,,則()A.1 B.-1 C.2 D.-26.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.7.a為正實數,i為虛數單位,,則a=()A.2 B. C. D.18.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.9.已知(i為虛數單位,),則ab等于()A.2 B.-2 C. D.10.明代數學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.11.復數的共軛復數記作,已知復數對應復平面上的點,復數:滿足.則等于()A. B. C. D.12.已知,函數在區(qū)間上恰有個極值點,則正實數的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在復平面內,復數,對應的向量分別是,,則_______.14.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.15.已知向量,,若向量與向量平行,則實數___________.16.已知一個正四棱錐的側棱與底面所成的角為,側面積為,則該棱錐的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線的參數方程為(,為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經過極點的圓.已知曲線上的點M對應的參數,射線與曲線交于點.(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值.18.(12分)在直角坐標系中,點的坐標為,直線的參數方程為(為參數,為常數,且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.19.(12分)已知函數.(1)當時,求函數的值域.(2)設函數,若,且的最小值為,求實數的取值范圍.20.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.21.(12分)在直角坐標系中,已知點,的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)設曲線與曲線相交于,兩點,求的值.22.(10分)某芯片公司為制定下一年的研發(fā)投入計劃,需了解年研發(fā)資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數據進行對比分析,建立了兩個函數模型:①y=α+βx2,②y=eλx+t,其中現該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數據,i=1,2,?,12,并對這些數據作了初步處理,得到了右側的散點圖及一些統(tǒng)計量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設ui和yi的相關系數為r1,xi和(2)(i)根據(1)的選擇及表中數據,建立y關于x的回歸方程(系數精確到0.01);(ii)若下一年銷售額y需達到90億元,預測下一年的研發(fā)資金投入量x是多少億元?附:①相關系數r=i=1n(xi-x②參考數據:308=4×77,90≈9.4868,e
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.2、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.3、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.4、A【解析】
先根據得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.5、B【解析】
根據f(x)是R上的奇函數,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數,即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數,且;∴;∴;∴的周期為4;∵時,;∴由奇函數性質可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數的奇偶性和周期性求值,此類問題一般根據條件先推導出周期,利用函數的周期變換來求解,考查理解能力和計算能力,屬于中等題.6、A【解析】
先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【點睛】本題主要考查復數的基本運算和幾何意義,屬于基礎題.7、B【解析】
,選B.8、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據三視圖判斷幾何體的形狀及相關幾何量的數據是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.9、A【解析】
利用復數代數形式的乘除運算化簡,再由復數相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數代數形式的乘除運算,考查復數相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.10、C【解析】
根據程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.11、A【解析】
根據復數的幾何意義得出復數,進而得出,由得出可計算出,由此可計算出.【詳解】由于復數對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數模的計算,考查了復數的坐標表示、共軛復數以及復數的除法,考查計算能力,屬于基礎題.12、B【解析】
先利用向量數量積和三角恒等變換求出,函數在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數量積運算和三角恒等變換與三角函數性質的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數關系式化成或的形式;(2)根據自變量的范圍確定的范圍,根據相應的正弦曲線或余弦曲線求值域或最值或參數范圍.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由坐標系可知考點:復數運算14、【解析】
先求出總的基本事件數,再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數,然后根據古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是中檔題.15、【解析】
由題可得,因為向量與向量平行,所以,解得.16、【解析】
如圖所示,正四棱錐,為底面的中心,點為的中點,則,設,根據正四棱錐的側面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點為的中點,則,設,,,,,,.故答案為:.【點睛】本題考查棱錐的側面積和體積,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)..(2)【解析】
(1)先求解a,b,消去參數,即得曲線的直角坐標方程;再求解,利用極坐標和直角坐標的互化公式,即得曲線的直角坐標方程;(2)由于,可設,,代入曲線直角坐標方程,可得的關系,轉化,可得解.【詳解】(1)將及對應的參數,代入得,即,所以曲線的方程為,為參數,所以曲線的直角坐標方程為.設圓的半徑為R,由題意,圓的極坐標方程為(或),將點代入,得,即,所以曲線的極坐標方程為,所以曲線的直角坐標方程為.(2)由于,故可設,代入曲線直角坐標方程,可得,,所以.【點睛】本題考查了極坐標和直角坐標,參數方程和一般方程的互化以及極坐標的幾何意義的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.18、(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數方程代入圓的普通方程,設、對應的參數分別為,列出韋達定理,由及在圓的上方,得,即即可解得;【詳解】解:(1)曲線的直角坐標方程為.由點在圓外,得點的坐標為,結合,解得.故的取值范圍是.(2)由直線的參數方程,得直線過點,傾斜角為,將直線的參數方程代入,并整理得,其中.設、對應的參數分別為,則,.由及在圓的上方,得,即,代入①,得,,消去,得,結合,解得.故的值是.【點睛】本題考查極坐標方程化為直角坐標方程,直線的參數方程的幾何意義的應用,屬于中檔題.19、(1);(2).【解析】
(1)令,求出的范圍,再由指數函數的單調性,即可求出結論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關系,求出的值,進而求出的取值關系.【詳解】(1)當時,,令,∵∴,而是增函數,∴,∴函數的值域是.(2)當時,則在上單調遞減,在上單調遞增,所以的最小值為,在上單調遞增,最小值為,而的最小值為,所以這種情況不可能.當時,則在上單調遞減且沒有最小值,在上單調遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實數的取值范圍是.【點睛】本題考查復合函數的值域與分段函數的最值,熟練掌握二次函數圖像和性質是解題的關鍵,屬于中檔題.20、(1)見解析(2)【解析】
(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1);(2)【解析】
(1)消去參數方程中的參數,求得的普通方程,利用極坐標和直角坐標的轉化公式,求得的直角坐標方程.(2)求得曲線的標準參數方程,代入的直角坐標方程,寫出韋達定理,根據直線參數中參數的幾何意義,求得的值.【詳解】(1)由的參數方程(為參數),消去參數可得,由曲線的極坐標方程為,得,所以的直角坐方程為,即.(2)因為在曲線上,故可設曲線的參數方程為(為參數),代入化簡可得.設,對應的參數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃商場場地合同
- 公司員工激勵演講稿
- 養(yǎng)老護理行業(yè)老年人照護需求評估
- 肉羊養(yǎng)殖購銷合同
- 生物醫(yī)藥領域新藥研發(fā)投資合同
- 有關個人向公司借款協(xié)議書
- 城市道路施工安全管理規(guī)定
- 好品質故事解讀
- 電影制作公司演員拍攝安全協(xié)議
- 2025年漢語拼音yw助力企業(yè)營銷策略分析
- (高清版)JTG 3363-2019 公路橋涵地基與基礎設計規(guī)范
- 周志華-機器學習-Chap01緒論-課件
- 中石油加油站管理標準規(guī)范管理部分
- 高中雷雨完整省公開課金獎全國賽課一等獎微課獲獎課件
- 施工現場安全標準化施工手冊(匯編)
- 《串珠》教案-2024鮮版
- 藥物超敏反應綜合征并人類免疫缺陷病毒感染1例及文獻復習
- 經濟數學(高等職業(yè))全套教學課件
- 口腔種植學試題
- 網絡傳播概論(彭蘭第5版) 課件全套 第1-8章 網絡媒介的演變-網絡傳播中的“數字鴻溝”
- 口服止痛藥物健康宣教
評論
0/150
提交評論