




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
新疆維吾爾自治區(qū)五大名校2025屆高一數(shù)學第二學期期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,那么等于()A. B. C. D.2.設m>1,在約束條件y≥xA.1,1+2C.(1,3) D.(3,+∞)3.已知函數(shù),在中,內(nèi)角的對邊分別是,內(nèi)角滿足,若,則的面積的最大值為()A. B. C. D.4.如圖,A,B是半徑為1的圓周上的定點,P為圓周上的動點,∠APB是銳角,大小為.圖中△PAB的面積的最大值為()A.+sin2 B.sin+sin2C.+sin D.+cos5.圓與直線的位置關(guān)系為()A.相離 B.相切C.相交 D.以上都有可能6.已知,,,則的大小關(guān)系為()A. B. C. D.7.直線的傾斜角是()A.30° B.60° C.120° D.135°8.已知函數(shù),若在區(qū)間內(nèi)沒有零點,則的取值范圍是A. B. C. D.9.在邊長為2的菱形中,,是的中點,則A. B. C. D.10.已知向量,滿足且,若向量在向量方向上的投影為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.圓和圓交于A,B兩點,則弦AB的垂直平分線的方程是________.12.已知數(shù)列中,,當時,,數(shù)列的前項和為_____.13.在《九章算術(shù)·商功》中將四個面均為直角三角形的三棱錐稱為鱉臑(biēnào),在如下圖所示的鱉臑中,,,,則的直角頂點為______.14.已知數(shù)列滿足:(),設的前項和為,則______;15.等差數(shù)列的前項和為,,,等比數(shù)列滿足,.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前15項和.16.在數(shù)列中,,,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,,且,,,點在上,且.(1)求證:平面⊥平面;(2)求證:直線∥平面.18.在中,角對應的邊分別是,且.(1)求角;(2)若,求的取值范圍.19.設是正項等比數(shù)列的前項和,已知,(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.20.已知.(1)求的值;(2)求的值.21.已知分別是的三個內(nèi)角所對的邊.(1)若的面積,求的值;(2)若,且,試判斷的形狀.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
首先求出題中,,之間的關(guān)系,然后利用正切的和角公式求解即可.【詳解】由題知,,所以.故選:B.【點睛】本題考查了正切的和角公式,屬于基礎題.2、A【解析】試題分析:∵,故直線與直線交于點,目標函數(shù)對應的直線與直線垂直,且在點,取得最大值,其關(guān)系如圖所示:即,解得,又∵,解得,選:A.考點:簡單線性規(guī)劃的應用.【方法點睛】本題考查的知識點是簡單線性規(guī)劃的應用,我們可以判斷直線的傾斜角位于區(qū)間上,由此我們不難判斷出滿足約束條件的平面區(qū)域的形狀,其中根據(jù)平面直線方程判斷出目標函數(shù)對應的直線與直線垂直,且在點取得最大值,并由此構(gòu)造出關(guān)于的不等式組是解答本題的關(guān)鍵.3、B【解析】
通過將利用合一公式變?yōu)?,代入A求得A角,從而利用余弦定理得到b,c,的關(guān)系,從而利用均值不等式即可得到面積最大值.【詳解】,為三角形內(nèi)角,則,,當且僅當時取等號【點睛】本題主要考查三角函數(shù)恒等變換,余弦定理,面積公式及均值不等式,綜合性較強,意在考查學生的轉(zhuǎn)化能力,對學生的基礎知識掌握要求較高.4、B【解析】
由正弦定理可得,,則,,當點在的中垂線上時,取得最大值,此時的面積最大,求解即可.【詳解】在中,由正弦定理可得,,則.,當點在的中垂線上時,取得最大值,此時的面積最大.取的中點,過點作的垂線,交圓于點,取圓心為,則(為銳角),.所以的面積最大為.故選B.【點睛】本題考查了三角形的面積的計算、正弦定理的應用,考查了三角函數(shù)的化簡,考查了計算能力,屬于基礎題.5、C【解析】
由直線方程可確定其恒過的定點,由點與圓的位置關(guān)系的判定方法知該定點在圓內(nèi),則可知直線與圓相交.【詳解】由得:直線恒過點在圓內(nèi)部直線與圓相交故選:【點睛】本題考查直線與圓位置關(guān)系的判定,涉及到直線恒過定點的求解、點與圓的位置關(guān)系的判定,屬于常考題型.6、B【解析】
根據(jù)對數(shù)函數(shù)的單調(diào)性可知都大于1,把化成后可得的大小,從而可得的大小關(guān)系.【詳解】因為及都是上的增函數(shù),故,,又,故,選B.【點睛】對數(shù)的大小比較,可通過尋找合適的單調(diào)函數(shù)來構(gòu)建大小關(guān)系,如果底數(shù)不統(tǒng)一,可以利用對數(shù)的運算性質(zhì)統(tǒng)一底數(shù).不同類型的數(shù)比較大小,應找一個中間數(shù),通過它實現(xiàn)大小關(guān)系的傳遞.7、C【解析】
根據(jù)直線方程求出斜率即可得到傾斜角.【詳解】由題:直線的斜率為,所以傾斜角為120°.故選:C【點睛】此題考查根據(jù)直線方程求傾斜角,需要熟練掌握直線傾斜角與斜率的關(guān)系,熟記常見特殊角的三角函數(shù)值.8、B【解析】
函數(shù),由,可得,,因此即可得出.【詳解】函數(shù)由,可得解得,∵在區(qū)間內(nèi)沒有零點,
.故選B.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)、不等式的解法,考查了推理能力與計算能力,屬于中檔題.9、D【解析】
選取向量為基底,用基底表示,然后計算.【詳解】由題意,,.故選D.【點睛】本題考查向量的數(shù)量積,平面向量的線性運算,解題關(guān)鍵是選取基底,把向量用基底表示.10、A【解析】由,即,所以,由向量在向量方向上的投影為,則,即,所以,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
弦AB的垂直平分線即兩圓心連線.【詳解】弦AB的垂直平分線即兩圓心連線方程為故答案為【點睛】本題考查了弦的垂直平分線,轉(zhuǎn)化為過圓心的直線可以簡化運算.12、.【解析】
首先利用數(shù)列的關(guān)系式的變換求出數(shù)列為等差數(shù)列,進一步求出數(shù)列的通項公式,最后求出數(shù)列的和.【詳解】解:數(shù)列中,,當時,,整理得,即,∴數(shù)列是以為首項,6為公差的等差數(shù)列,故,所以,故答案為:.【點睛】本題主要考查定義法判斷等差數(shù)列,考查等差數(shù)列的前項和,考查運算能力和推理能力,屬于中檔題.13、【解析】
根據(jù),可得平面,進而可得,再由,證明平面,即可得出,是的直角頂點.【詳解】在三棱錐中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角頂點為.故答案為:.【點睛】本題考查了直線與直線以及直線與平面垂直的應用問題,屬于基礎題.14、130【解析】
先利用遞推公式計算出的通項公式,然后利用錯位相減法可求得的表達式,即可完成的求解.【詳解】因為,所以,所以,所以,又因為,不符合時的通項公式,所以,當時,,所以,所以,所以,所以.故答案為:.【點睛】本題考查根據(jù)數(shù)列的遞推公式求通項公式以及錯位相減法的使用,難度一般.利用遞推公式求解數(shù)列的通項公式時,若出現(xiàn)了的形式,一定要注意標注,同時要驗證是否滿足的情況,這決定了通項公式是否需要分段去寫.15、(1),;(2)125.【解析】
(1)直接利用等差數(shù)列,等比數(shù)列的公式得到答案.(2),前5項為正,后面為負,再計算數(shù)列的前15項和.【詳解】解:(1)聯(lián)立,解得,,故,,聯(lián)立,解得,故.(2).【點睛】本題考查了等差數(shù)列,等比數(shù)列,絕對值和,判斷數(shù)列的正負分界處是解題的關(guān)鍵.16、16【解析】
依次代入即可求得結(jié)果.【詳解】令,則;令,則;令,則;令,則本題正確結(jié)果:【點睛】本題考查根據(jù)數(shù)列的遞推公式求解數(shù)列中的項,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)通過邊長關(guān)系可知,所以,又,所以平面,所以平面平面.(2)連接交與點,連接,易得∽,所以,所以直線平面.,【詳解】(1)因為,,所以,所以又,且,平面,平面所以平面又平面所以平面平面(2)連接交與點,連接在四邊形中,,∽,所以又,即所以又直線平面,直線平面所以直線平面【點睛】(1)證明面面垂直:先正線面垂直,線又屬于另一個面,即可證明面面垂直.(2)證明線面平行,在面內(nèi)找一個線與已知直線平行即可.18、(1);(2).【解析】
(1)依照條件形式,使用正弦定理化角為邊,再用余弦定理求出,從而得出角的值;(2)先利用余弦定理找出的關(guān)系,再利用基本不等式放縮,求出的取值范圍.【詳解】(1)由及正弦定理得,,由余弦定理得,又,所以(2)由及,得,即所以,所以,當且僅當時,等號成立,又,所以.【點睛】本題主要考查利用正余弦定理解三角形,以及利用基本不等式求等式條件下的取值范圍問題,第二問也可以采用正弦定理化邊為角,利用“同一法”求出的取值范圍.19、(1);(2)【解析】
(1)設正項等比數(shù)列的公比為,當時,可驗證出,可知;根據(jù)可構(gòu)造方程求得,進而根據(jù)等比數(shù)列通項公式可求得結(jié)果;(2)由(1)可得,采用錯位相減法即可求得結(jié)果.【詳解】(1)設正項等比數(shù)列的公比為當時,,解得:,不合題意由得:,又整理得:,即,解得:(2)由(1)得:…①則…②①②得:【點睛】本題考查等比數(shù)列通項公式的求解、錯位相減法求解數(shù)列的前項和;關(guān)鍵是能夠得到數(shù)列的通項公式后,根據(jù)等差乘以等比的形式確定采用錯位相減法求得結(jié)果,對學生的計算和求解能力有一定要求.20、(1);(2).【解析】試題分析:(1)要求的值,根據(jù)兩角和的正弦公式,可知還要求得,由于已知,所以,利用同角關(guān)系可得;(2)要求,由兩角差的余弦公式我們知要先求得,而這由二倍角公式結(jié)合(1)可很容易得到.本題應該是三角函數(shù)最基本的題型,只要應用公式,不需要作三角函數(shù)問題中常見的“角”的變換,“函數(shù)名稱”的變換等技巧,可以算得上是容易題,當然要正確地解題,也必須牢記公式,及計算正確.試題解析:(1)由題意,所以.(2)由(1)得,,所以.【考點】三角函數(shù)的基本關(guān)系式,二倍角公式,兩角和與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 危化標準化與風險管控2
- 《新能源汽車的品牌戰(zhàn)略》課件
- 2025辦公室租賃合同模板下載2
- 消防安全檢查附帶標準依據(jù)
- 2025年軟件維護合同示范文本
- 2025雙邊銷售合同范本
- 2025分銷代理的合作合同條款
- 環(huán)境工程與生態(tài)建設設計考核試卷
- 熱電聯(lián)產(chǎn)技術(shù)標準規(guī)范理解考核試卷
- 2024年09月昆明理工大學附屬安寧市第一人民醫(yī)院招聘(12人)筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 國家開放大學《人文英語3》章節(jié)測試參考答案
- 中國暈厥診斷與治療專家共識(2014 )
- 長途大客車總布置設計
- Q∕GDW 10799.6-2018 國家電網(wǎng)有限公司電力安全工作規(guī)程 第6部分:光伏電站部分
- T∕CAAA 002-2018 燕麥 干草質(zhì)量分級
- 一年級《20以內(nèi)的加減法填括號口算題(共100道)》專項練習題
- 方格網(wǎng)計算步驟及方法
- 課題評分表(共1頁)
- 六年級趣味數(shù)學(課堂PPT)
- 詢價單(模板)
- 關(guān)于我縣二次供水調(diào)研報告
評論
0/150
提交評論