版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖南省衡陽縣創(chuàng)新實驗班高一下數(shù)學期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某大學數(shù)學系共有本科生1000人,其中一、二、三、四年級的人數(shù)比為4∶3∶2∶1,要用分層抽樣的方法從所有本科生中抽取一個容量為200的樣本,則應(yīng)抽取三年級的學生人數(shù)為()A.80 B.40 C.60 D.202.設(shè)a,b,c均為不等于1的正實數(shù),則下列等式中恒成立的是A.B.C.D.3.如圖,正方體ABCD﹣A1B1C1D1的棱長為3,線段B1D1上有兩個動點E,F(xiàn)且EF=1,則當E,F(xiàn)移動時,下列結(jié)論中錯誤的是()A.AE∥平面C1BDB.四面體ACEF的體積不為定值C.三棱錐A﹣BEF的體積為定值D.四面體ACDF的體積為定值4.已知角A滿足,則的值為()A. B. C. D.5.若,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則6.等比數(shù)列中,,則A.20 B.16 C.15 D.107.在的二面角內(nèi),放置一個半徑為3的球,該球切二面角的兩個半平面于A,B兩點,那么這兩個切點在球面上的最短距離為()A. B. C. D.8.己知x與y之間的幾組數(shù)據(jù)如下表:x0134y1469則y與x的線性回歸直線y=A.(2,5) B.(5,9) C.(0,1) D.(1,4)9.公比為2的等比數(shù)列{}的各項都是正數(shù),且=16,則=()A.1 B.2 C.4 D.810.直線是圓在處的切線,點是圓上的動點,則點到直線的距離的最小值等于()A.1 B. C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列的前項和為,,,則________.12.設(shè)等比數(shù)列的前項和為,若,,則的值為______.13.某海域中有一個小島(如圖所示),其周圍3.8海里內(nèi)布滿暗礁(3.8海里及以外無暗礁),一大型漁船從該海域的處出發(fā)由西向東直線航行,在處望見小島位于北偏東75°,漁船繼續(xù)航行8海里到達處,此時望見小島位于北偏東60°,若漁船不改變航向繼續(xù)前進,試問漁船有沒有觸礁的危險?答:______.(填寫“有”、“無”、“無法判斷”三者之一)14.若2弧度的圓心角所對的弧長為4cm,則這個圓心角所夾的扇形的面積是______.15.在中,角所對的邊分別為.若,,則角的大小為____________________.16.一圓柱的側(cè)面展開圖是長、寬分別為3、4的矩形,則此圓柱的側(cè)面積是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的值及f(x)的對稱軸;(2)將的圖象向左平移個單位得到函數(shù)的圖象,求的單調(diào)遞增區(qū)間.18.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在區(qū)間上的最值.19.已知:三點,其中.(1)若三點在同一條直線上,求的值;(2)當時,求.20.設(shè)函數(shù).(1)求;(2)求函數(shù)在區(qū)間上的值域.21.向量函數(shù).(1)求的最小正周期及單調(diào)增區(qū)間;(2)求在區(qū)間上的最大值和最小值及取最值時的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:方法一:由條件可知三年級的同學的人數(shù)為,所以應(yīng)抽人數(shù)為,方法二:由條件可知樣本中一、二、三、四年級的人數(shù)比為4∶3∶2∶1,因此應(yīng)抽取三年級的學生人數(shù)為,答案選B.考點:分層抽樣2、B【解析】
根據(jù)對數(shù)運算的規(guī)律一一進行運算可得答案.【詳解】解:由a,b,c≠1.考察對數(shù)2個公式:,,對選項A:,顯然與第二個公式不符,所以為假.對選項B:,顯然與第二個公式一致,所以為真.對選項C:,顯然與第一個公式不符,所以為假.對選項D:,同樣與第一個公式不符,所以為假.所以選B.【點睛】本題主要考查對數(shù)運算的性質(zhì),熟練掌握對數(shù)運算的各公式是解題的關(guān)鍵.3、B【解析】
根據(jù)面面平行的性質(zhì)定理,判斷A選項是否正確,根據(jù)錐體體積計算公式,判斷BCD選項是否正確.【詳解】對于A選項,易得平面與平面平行,所以平面成立,A選項結(jié)論正確.對于B選項,由于長度一定,所以三角形面積為定值.到平面的距離,也即到平面的距離一定,所以四面體體積為定值,故B選項結(jié)論錯誤.對于C選項,由于長度一定,所以三角形面積為定值.到平面的距離,也即到平面的距離一定,所以三棱錐體積為定值,故C選項結(jié)論正確.對于D選項,由于三角形面積為定值,到平面的距離為定值,所以四面體的體積為定值.綜上所述,錯誤的結(jié)論為B選項.故選:B【點睛】本小題主要考查利用面面平行證明線面平行,考查三棱錐(四面體)體積的計算,考查空間想象能力和邏輯推理能力,屬于基礎(chǔ)題.4、A【解析】
將等式兩邊平方,利用二倍角公式可得出的值.【詳解】,在該等式兩邊平方得,即,解得,故選A.【點睛】本題考查同角三角函數(shù)的基本關(guān)系,考查二倍角正弦公式的應(yīng)用,一般地,解三角函數(shù)有關(guān)問題時,遇到,常用平方法來求解,考查計算能力,屬于中等題.5、D【解析】
根據(jù)不等式的基本性質(zhì)逐一判斷可得答案.【詳解】解:A.當時,不成立,故A不正確;B.取,,則結(jié)論不成立,故B不正確;C.當時,結(jié)論不成立,故C不正確;D.若,則,故D正確.故選:D.【點睛】本題主要考查不等式的基本性質(zhì),屬于基礎(chǔ)題.6、B【解析】試題分析:由等比中項的性質(zhì)可得:,故選擇B考點:等比中項的性質(zhì)7、A【解析】
根據(jù)題意,作出截面圖,計算弧長即可.【詳解】根據(jù)題意,作出該球過球心且經(jīng)過A、B的截面圖如下所示:由題可知:則,故滿足題意的最短距離為弧長BA,在該弧所在的扇形中,弧長.故選:A.【點睛】本題考查弧長的計算公式,二面角的定義,屬綜合基礎(chǔ)題.8、A【解析】
分別求出x,y均值即得.【詳解】x=0+1+3+44=2,故選A.【點睛】本題考查線性回歸直線方程,線性回歸直線一定過點(x9、A【解析】試題分析:在等比數(shù)列中,由知,,故選A.考點:等比數(shù)列的性質(zhì).10、D【解析】
先求得切線方程,然后用點到直線距離減去半徑可得所求的最小值.【詳解】圓在點處的切線為,即,點是圓上的動點,圓心到直線的距離,∴點到直線的距離的最小值等于.故選D.【點睛】圓中的最值問題,往往轉(zhuǎn)化為圓心到幾何對象的距離的最值問題.此類問題是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、18【解析】
利用,化簡得到數(shù)列是首項為,公比為的等比數(shù)列,利用,即可求解.【詳解】,即所以數(shù)列是首項為,公比為的等比數(shù)列即所以故答案為:【點睛】本題主要考查了與的關(guān)系以及等比數(shù)列的通項公式,屬于基礎(chǔ)題.12、16【解析】
利用及可計算,從而可計算的值.【詳解】因為,故,因為,故,故,故填16.【點睛】等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學問題.13、無【解析】
可過作的延長線的垂線,垂足為,結(jié)合角度關(guān)系可判斷為等腰三角形,再通過的邊角關(guān)系即可求解,判斷與3.8的大小關(guān)系即可【詳解】如圖,過作的延長線的垂線,垂足為,在中,,,則,所以為等腰三角形。,又,所以,,所以漁船沒有觸礁的危險故答案為:無【點睛】本題考查三角函數(shù)在生活中的實際應(yīng)用,屬于基礎(chǔ)題14、【解析】
先求出扇形的半徑,再求這個圓心角所夾的扇形的面積.【詳解】設(shè)扇形的半徑為R,由題得.所以扇形的面積為.故答案為:【點睛】本題主要考查扇形的半徑和面積的計算,意在考查學生對這些知識的理解掌握水平.15、【解析】本題考查了三角恒等變換、已知三角函數(shù)值求角以及正弦定理,考查了同學們解決三角形問題的能力.由得,所以由正弦定理得,所以A=或(舍去)、16、12【解析】
直接根據(jù)圓柱的側(cè)面展開圖的面積和圓柱側(cè)面積的關(guān)系計算得解.【詳解】因為圓柱的側(cè)面展開圖的面積和圓柱側(cè)面積相等,所以此圓柱的側(cè)面積為.故答案為:12【點睛】本題主要考查圓柱的側(cè)面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)?!窘馕觥?/p>
(1)求得函數(shù),代入即可求解的值,令,即可求得函數(shù)的對稱軸的方程;(2)由(1),結(jié)合三角函數(shù)的圖象變換,求得,再根據(jù)三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由函數(shù),則,令,解得,即函數(shù)的對稱軸的方程為(2)由(1)可知函數(shù)的圖象向左平移個單位得到函數(shù)的圖象,可得的圖象,令,解得,所以函數(shù)的單調(diào)遞增區(qū)間為.【點睛】本題主要考查了三函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換的應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換求得函數(shù)的解析式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1);(2)最大值為,最小值為.【解析】
(1)利用兩角和的正弦公式以及二倍角的余弦公式、兩角和的余弦公式將函數(shù)的解析式化簡為,然后解不等式可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由,可計算出,然后由余弦函數(shù)的基本性質(zhì)可求出函數(shù)在區(qū)間上的最大值和最小值.【詳解】(1),解不等式,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)當時,.當時,函數(shù)取得最大值;當時,函數(shù)取得最小值.【點睛】本題考查三角函數(shù)單調(diào)區(qū)間以及在定區(qū)間上最值的求解,解題時要利用三角恒等變換思想將三角函數(shù)的解析式化簡,并借助正弦函數(shù)或余弦函數(shù)的基本性質(zhì)進行求解,考查分析問題和解決問題的能力,屬于中等題.19、(1)(2)【解析】
(1)利用共線向量的特點求解m;(2)先利用求解m,再求解.【詳解】(1)依題有:,共線.(2)由得:又【點睛】本題主要考查平面向量的應(yīng)用,利用共線向量可以證明三點共線問題,利用向量可以解決長度問題.20、(1);(2).【解析】
(1)把直接帶入,或者先化簡(2)化簡得,,根據(jù)求出的范圍即可解決.【詳解】(1)因為,,所以;(2)當時,,所以,所以.【點睛】本題主要考查了三角函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人房產(chǎn)抵押擔保貸款保險合同范本2篇
- 二零二五年度車輛運輸水工鵝卵石運輸協(xié)議3篇
- 2025年個人股東股權(quán)增資擴股合同模板4篇
- 設(shè)計思維解鎖創(chuàng)意潛能的鑰匙
- 2025年度大學生實習實訓基地實習崗位合作協(xié)議
- 2025年度個人戶外運動裝備過橋資金借款合同3篇
- 網(wǎng)絡(luò)安全實訓室的應(yīng)急預(yù)案制定及實施
- 2025年度工傷賠償協(xié)議范本發(fā)布通知3篇
- 二零二五年度車牌號碼拍賣合同書4篇
- 2025版新型材料研發(fā)項目施工保密協(xié)議書3篇
- 焊接機器人在汽車制造中應(yīng)用案例分析報告
- 合成生物學在生物技術(shù)中的應(yīng)用
- 中醫(yī)門診病歷
- 廣西華銀鋁業(yè)財務(wù)分析報告
- 無違法犯罪記錄證明申請表(個人)
- 電捕焦油器火災(zāi)爆炸事故分析
- 大學生勞動教育PPT完整全套教學課件
- 繼電保護原理應(yīng)用及配置課件
- 《殺死一只知更鳥》讀書分享PPT
- 蓋洛普Q12解讀和實施完整版
- 2023年Web前端技術(shù)試題
評論
0/150
提交評論