版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省樂山四校2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列說法正確的是()A.函數(shù)的最小值為 B.函數(shù)的最小值為C.函數(shù)的最小值為 D.函數(shù)的最小值為2.已知等差數(shù)列的前項(xiàng)和為,若,則的值為A.10 B.15 C.25 D.303.設(shè),若3是與的等比中項(xiàng),則的最小值為().A. B. C. D.4.若實(shí)數(shù)a、b滿足條件,則下列不等式一定成立的是A. B. C. D.5.已知內(nèi)角,,所對的邊分別為,,且滿足,則=()A. B. C. D.6.若將函數(shù)的圖象向右平移個(gè)單位后,所得圖象對應(yīng)的函數(shù)為()A. B. C. D.7.在某次測量中得到樣本數(shù)據(jù)如下:,若樣本數(shù)據(jù)恰好是樣本每個(gè)數(shù)都增加得到,則、兩樣本的下列數(shù)字特征對應(yīng)相同的是()A.眾數(shù) B.中位數(shù) C.方差 D.平均數(shù)8.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長為5的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲1000個(gè)點(diǎn),己知恰有400個(gè)點(diǎn)落在陰影部分,據(jù)此可估計(jì)陰影部分的面積是A.2 B.3 C.10 D.159.已知,成等差數(shù)列,成等比數(shù)列,則的最小值是A.0 B.1 C.2 D.410.空間中可以確定一個(gè)平面的條件是()A.三個(gè)點(diǎn) B.四個(gè)點(diǎn) C.三角形 D.四邊形二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若函數(shù)恰有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為__________.12.已知等差數(shù)列的前三項(xiàng)為,則此數(shù)列的通項(xiàng)公式為______13.假設(shè)我國國民生產(chǎn)總值經(jīng)過10年增長了1倍,且在這10年期間我國國民生產(chǎn)總值每年的年增長率均為常數(shù),則______.(精確到)(參考數(shù)據(jù))14.在三棱錐中,,,,作交于,則與平面所成角的正弦值是________.15.如圖,已知扇形和,為的中點(diǎn).若扇形的面積為1,則扇形的面積為______.16.不等式的解集為_____________________。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱柱中,側(cè)棱底面,,,,,且點(diǎn)和分別為和的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點(diǎn),若直線和平面所成角的正弦值為,求線段的長.18.已知向量=,=,=,為坐標(biāo)原點(diǎn).(1)若△為直角三角形,且∠為直角,求實(shí)數(shù)的值;(2)若點(diǎn)、、能構(gòu)成三角形,求實(shí)數(shù)應(yīng)滿足的條件.19.在中,分別為內(nèi)角的對邊,且(1)求的大?。海?)若,求的面積.20.已知的頂點(diǎn),邊上的中線所在直線方程為,邊上的高,所在直線方程為.(1)求頂點(diǎn)的坐標(biāo);(2)求直線的方程.21.已知函數(shù).(1)當(dāng)時(shí),,求的值;(2)令,若對任意都有恒成立,求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
A.時(shí)無最小值;
B.令,由,可得,即,令,利用單調(diào)性研究其最值;
C.令,令,利用單調(diào)性研究其最值;
D.當(dāng)時(shí),,無最小值.【詳解】解:A.時(shí)無最小值,故A錯(cuò)誤;
B.令,由,可得,即,令,則其在上單調(diào)遞減,故,故B錯(cuò)誤;C.令,令,則其在上單調(diào)遞減,上單調(diào)遞增,故,故C正確;
D.當(dāng)時(shí),,無最小值,故D不正確.
故選:C.【點(diǎn)睛】本題考查了基本不等式的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.2、B【解析】
直接利用等差數(shù)列的性質(zhì)求出結(jié)果.【詳解】等差數(shù)列{an}的前n項(xiàng)和為Sn,若S17=85,則:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故選:B.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):等差數(shù)列的通項(xiàng)公式的應(yīng)用,及性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.3、C【解析】
由3是與的等比中項(xiàng),可得,再利用不等式知識(shí)可得的最小值.【詳解】解:3是與的等比中項(xiàng),,,=,故選C.【點(diǎn)睛】本題考查了指數(shù)式和對數(shù)式的互化,及均值不等式求最值的運(yùn)用,考查了計(jì)算變通能力.4、D【解析】
根據(jù)題意,由不等式的性質(zhì)依次分析選項(xiàng),綜合即可得答案.【詳解】根據(jù)題意,依次分析選項(xiàng):對于A、,時(shí),有成立,故A錯(cuò)誤;對于B、,時(shí),有成立,故B錯(cuò)誤;對于C、,時(shí),有成立,故C錯(cuò)誤;對于D、由不等式的性質(zhì)分析可得若,必有成立,則D正確;故選:D.【點(diǎn)睛】本題考查不等式的性質(zhì),對于錯(cuò)誤的結(jié)論舉出反例即可.5、A【解析】
利用正弦定理以及和與差的正弦公式可得答案;【詳解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根據(jù)正弦定理:可得sinA?tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴?tanA=1;∴tanA,那么A;故選A.【點(diǎn)睛】本題考查三角形的正弦定理,,內(nèi)角和定理以及和與差正弦公式的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.6、B【解析】
根據(jù)正弦型函數(shù)的圖象平移規(guī)律計(jì)算即可.【詳解】.故選:B.【點(diǎn)睛】本題考查三角函數(shù)圖象的平移變化,考查對基本知識(shí)的理解和掌握,屬于基礎(chǔ)題.7、C【解析】
分別計(jì)算出、兩個(gè)樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、方差和平均數(shù),再進(jìn)行判斷?!驹斀狻繕颖镜臄?shù)據(jù)為:、、、、,沒有眾數(shù),中位數(shù)為,平均數(shù)為,方差為,樣本的數(shù)據(jù)為:、、、、,沒有眾數(shù),中位數(shù)為,平均數(shù)為,方差為,因此,兩個(gè)樣本數(shù)據(jù)的方差沒變,故選:D?!军c(diǎn)睛】本題考查樣本的數(shù)據(jù)特征,考查對樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)以及方差概念的理解,熟練利用相關(guān)公式計(jì)算這些數(shù)據(jù),是解本題的關(guān)鍵,屬于中等題。8、C【解析】
根據(jù)古典概型概率公式以及幾何概型概率公式分別計(jì)算概率,解方程可得結(jié)果.【詳解】設(shè)陰影部分的面積是s,由題意得4001000【點(diǎn)睛】(1)當(dāng)試驗(yàn)的結(jié)果構(gòu)成的區(qū)域?yàn)殚L度、面積、體積等時(shí),應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時(shí),關(guān)鍵是試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時(shí)需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.9、D【解析】解:∵x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì)可知:a+b=x+y,cd=xy,當(dāng)且僅當(dāng)x=y時(shí)取“=”,10、C【解析】
根據(jù)公理2即可得出答案.【詳解】在A中,不共線的三個(gè)點(diǎn)能確定一個(gè)平面,共線的三個(gè)點(diǎn)不能確定一個(gè)平面,故A錯(cuò)誤;在B中,不共線的四個(gè)點(diǎn)最多能確定四個(gè)平面,故B錯(cuò)誤;在C中,由于三角形的三個(gè)頂點(diǎn)不共線,因此三角形能確定一個(gè)平面,故C正確;在D中,四邊形有空間四邊形和平面四邊形,空間四邊形不能確定一個(gè)平面,故D錯(cuò)誤.【點(diǎn)睛】本題對公理2進(jìn)行了考查,確定一個(gè)平面關(guān)鍵是對過不在一條直線上的三點(diǎn),有且只有一個(gè)平面的理解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先根據(jù)題意轉(zhuǎn)化為函數(shù)與有個(gè)交點(diǎn),再畫出與的圖象,根據(jù)圖象即可得到的取值范圍.【詳解】有題知:函數(shù)恰有個(gè)零點(diǎn),等價(jià)于函數(shù)與有個(gè)交點(diǎn).當(dāng)函數(shù)與相切時(shí),即:,,,解得或(舍去).所以根據(jù)圖象可知:.故答案為:【點(diǎn)睛】本題主要考查函數(shù)的零點(diǎn)問題,同時(shí)考查了學(xué)生的轉(zhuǎn)化能力,體現(xiàn)了數(shù)形結(jié)合的思想,屬于中檔題.12、【解析】由題意可得,解得.
∴等差數(shù)列的前三項(xiàng)為-1,1,1.
則1.
故答案為.13、【解析】
根據(jù)題意,設(shè)10年前的國民生產(chǎn)總值為,則10年后的國民生產(chǎn)總值為,結(jié)合題意可得,解可得的值,即可得答案.【詳解】解:根據(jù)題意,設(shè)10年前的國民生產(chǎn)總值為,則10年后的國民生產(chǎn)總值為,則有,即,解可得:,故答案為:.【點(diǎn)睛】本題考查函數(shù)的應(yīng)用,涉及指數(shù)、對數(shù)的運(yùn)算,關(guān)鍵是得到關(guān)于的方程,屬于基礎(chǔ)題.14、【解析】
取中點(diǎn),中點(diǎn),易得面,再求出到平面的距離,進(jìn)而求解再得出到平面的距離.從而算得與平面所成角的正弦值即可.【詳解】如圖,取中點(diǎn),中點(diǎn),連接.因?yàn)?,所以.因?yàn)?,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距離.到面的距離.又因?yàn)?所以,所以,所以,故到面的距離.故與平面所成角的正弦值是故答案為:【點(diǎn)睛】本題主要考查了空間中線面垂直的性質(zhì)與運(yùn)用,同時(shí)也考查了余弦定理在三角形中求線段與角度正余弦值的方法,需要根據(jù)題意找到點(diǎn)到面的距離求解,再求出線面的夾角.屬于難題.15、1【解析】
設(shè),在扇形中,利用扇形的面積公式可求,根據(jù)已知,在扇形中,利用扇形的面積公式即可計(jì)算得解.【詳解】解:設(shè),扇形的面積為1,即:,解得:,為的中點(diǎn),,在扇形中,.故答案為:1.【點(diǎn)睛】本題主要考查了扇形的面積公式的應(yīng)用,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于基礎(chǔ)題.16、或【解析】
利用一元二次函數(shù)的圖象或轉(zhuǎn)化為一元一次不等式組解一元二次不等式.【詳解】由,或,所以或,不等式的解集為或.【點(diǎn)睛】本題考查解一元二次不等式,考查計(jì)算能力,屬于基本題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)【解析】
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,依題意可得,又因?yàn)榉謩e為和的中點(diǎn),得.(Ⅰ)證明:依題意,可得為平面的一個(gè)法向量,,由此可得,,又因?yàn)橹本€平面,所以平面(Ⅱ),設(shè)為平面的法向量,則,即,不妨設(shè),可得,設(shè)為平面的一個(gè)法向量,則,又,得,不妨設(shè),可得因此有,于是,所以二面角的正弦值為.(Ⅲ)依題意,可設(shè),其中,則,從而,又為平面的一個(gè)法向量,由已知得,整理得,又因?yàn)?,解得,所以線段的長為.考點(diǎn):直線和平面平行和垂直的判定與性質(zhì),二面角、直線與平面所成的角,空間向量的應(yīng)用.18、(1);(2)【解析】
(1)利用向量的運(yùn)算法則求出,,再利用向量垂直的充要條件列出方程求出m;(2)由題意得A,B,C三點(diǎn)不共線,則與不共線,列出關(guān)于m的不等式即可.【詳解】(1)因?yàn)?,=,=,所以,,若△ABC為直角三角形,且∠A為直角,則,∴3(2﹣m)+(1﹣m)=0,解得.(2)若點(diǎn)A,B,C能構(gòu)成三角形,則這三點(diǎn)不共線,即與不共線,得3(1﹣m)≠2﹣m,∴實(shí)數(shù)時(shí),滿足條件.【點(diǎn)睛】本題考查向量垂直、向量共線的充要條件、利用向量共線解決三點(diǎn)共線、三點(diǎn)不共線等問題,屬于基礎(chǔ)題.19、(1)(2)【解析】
(1)根據(jù)正弦定理將,角化為邊得,即,再由余弦定理求解(2)根據(jù),由正弦定理,求邊b,又,然后代入公式求解.【詳解】(1)因?yàn)椋烧叶ɡ淼茫?,即,,又?(2)因?yàn)橛烧叶ɡ淼?,又,所?【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1);(2)【解析】
(1)根據(jù)邊上的高所在直線方程求出的斜率,由點(diǎn)斜式可得的方程,與所在直線方程聯(lián)立即可得結(jié)果;(2)設(shè)則,代入中,可求得點(diǎn)坐標(biāo),利用兩點(diǎn)式可得結(jié)果.【詳解】(1)由邊上的高所在直線方程為得,所以直線AB所在的直線方程為,即聯(lián)立解得所以頂點(diǎn)的坐標(biāo)為(4,3)(2)因?yàn)樵谥本€上,所以設(shè)則,代入中,得所以則直線的方程為,即【點(diǎn)睛】本題主要考查直線的方程,直線方程主要有五種形式,每種形式的直線方程都有其局限性,斜截式與點(diǎn)斜式要求直線斜率存在,所以用這兩種形式設(shè)直線方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版拌合料生產(chǎn)設(shè)備維修與保養(yǎng)合同4篇
- 2025年度農(nóng)業(yè)休閑觀光區(qū)綠化景觀建設(shè)與運(yùn)營合同4篇
- 2025版安防弱電系統(tǒng)集成服務(wù)合同3篇
- 2025年度個(gè)人肖像攝影合同范本集4篇
- 二零二五年度南京體育健身行業(yè)勞務(wù)派遣合同
- 二零二五年度木材行業(yè)安全生產(chǎn)責(zé)任保險(xiǎn)合同
- 第8~9講 反應(yīng)動(dòng)力學(xué)基礎(chǔ)知識(shí)
- 2025年度建筑幕墻工程安全質(zhì)量責(zé)任合同4篇
- 二零二五年度農(nóng)業(yè)生態(tài)環(huán)境保護(hù)與修復(fù)服務(wù)合同
- 二零二五年度使用知識(shí)產(chǎn)權(quán)許可合同
- 中國末端執(zhí)行器(靈巧手)行業(yè)市場發(fā)展態(tài)勢及前景戰(zhàn)略研判報(bào)告
- 北京離婚協(xié)議書(2篇)(2篇)
- 2025中國聯(lián)通北京市分公司春季校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 康復(fù)醫(yī)學(xué)科患者隱私保護(hù)制度
- Samsung三星SMARTCAMERANX2000(20-50mm)中文說明書200
- 2024年藥品質(zhì)量信息管理制度(2篇)
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 廣東省廣州市2024年中考數(shù)學(xué)真題試卷(含答案)
- 高中學(xué)校開學(xué)典禮方案
- 內(nèi)審檢查表完整版本
- 3級人工智能訓(xùn)練師(高級)國家職業(yè)技能鑒定考試題及答案
評論
0/150
提交評論