版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
錫林郭勒市重點中學2025屆高一下數(shù)學期末學業(yè)質量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,兩個正方形和所在平面互相垂直,設、分別是和的中點,那么:①;②平面;③;④、異面.其中不正確的序號是()A.① B.② C.③ D.④2.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線3.對具有線性相關關系的變量,有觀測數(shù)據(jù),已知它們之間的線性回歸方程是,若,則()A. B. C. D.4.如圖,在正方體中,,分別是,中點,則異面直線與所成的角是()A. B. C. D.5.直線x+2y﹣3=0與直線2x+ay﹣1=0垂直,則a的值為()A.﹣1 B.4 C.1 D.﹣46.在中,已知,,若點在斜邊上,,則的值為().A.6 B.12 C.24 D.487.設為實數(shù),且,則下列不等式成立的是()A. B. C. D.8.已知向量,與的夾角為,則()A.3 B.2 C. D.19.若是的重心,,,分別是角的對邊,若,則角()A. B. C. D.10.總體由編號為01,02,…,60的60個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第8列和第9列數(shù)字開始由左至右選取兩個數(shù)字,則選出的第5個個體的編號為()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.14二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,內角A、B、C所對的邊分別為a、b、c,若,則_____.12.已知,,若,則______.13.不等式的解集為______.14.已知球為正四面體的外接球,,過點作球的截面,則截面面積的取值范圍為____________________.15.將正整數(shù)按下圖方式排列,2019出現(xiàn)在第行第列,則______;12345678910111213141516………16.在平面直角坐標系xOy中,雙曲線的右支與焦點為F的拋物線交于A,B兩點若,則該雙曲線的漸近線方程為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在△ABC中,D為BC邊上一點,,設,.(1)試、用表示;(2)若,,且與的夾角為60°,求及的值.18.如圖,在正方體中,是的中點.(1)求證:平面;(2)求證:平面平面.19.在海上進行工程建設時,一般需要在工地某處設置警戒水域;現(xiàn)有一海上作業(yè)工地記為點,在一個特定時段內,以點為中心的1海里以內海域被設為警戒水域,點正北海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東且與點相距10海里的位置,經過12分鐘又測得該船已行駛到點北偏東且與點相距海里的位置.(1)求該船的行駛速度(單位:海里/小時);(2)若該船不改變航行方向繼續(xù)行駛.試判斷它是否會進入警戒水域(點與船的距離小于1海里即為進入警戒水域),并說明理由.20.已知函數(shù).(1)求函數(shù)f(x)的最小值及f(x)取到最小值時自變量x的集合;(2)指出函數(shù)y=f(x)的圖象可以由函數(shù)y=sinx的圖象經過哪些變換得到;21.已知向量,,,設函數(shù).(1)求的最小正周期;(2)求在上的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
取的中點,連接,,連接,,由線面垂直的判定和性質可判斷①;由三角形的中位線定理,以及線面平行的判定定理可判斷②③④.【詳解】解:取的中點,連接,,連接,,正方形和所在平面互相垂直,、分別是和的中點,可得,,平面,可得,故①正確;由為的中位線,可得,且平面,可得平面,故②③正確,④錯誤.故選:D.【點睛】本題主要考查空間線線和線面的位置關系,考查轉化思想和數(shù)形結合思想,屬于基礎題.2、B【解析】試題分析:根據(jù)平面的基本性質及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質及推論知B正確.故選B.考點:平面的基本性質及推論.3、A【解析】
先求出,再由線性回歸直線通過樣本中心點即可求出.【詳解】由題意,,因為線性回歸直線通過樣本中心點,將代入可得,所以.故選:A.【點睛】本題主要考查線性回歸直線通過樣本中心點這一知識點的應用,屬常規(guī)考題.4、D【解析】
如圖,平移直線到,則直線與直線所成角,由于點都是中點,所以,則,而,所以,即,應選答案D.5、A【解析】
由兩直線垂直的條件,列出方程即可求解,得到答案.【詳解】由題意,直線與直線垂直,則滿足,解得,故選:A.【點睛】本題主要考查了兩直線位置關系的應用,其中解答中熟記兩直線垂直的條件是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、C【解析】試題分析:因為,,,所以==+==,故選C.考點:1、平面向量的加減運算;2、平面向量的數(shù)量積運算.7、C【解析】
本題首先可根據(jù)判斷出項錯誤,然后令可判斷出項和項錯誤,即可得出結果。【詳解】因為,所以,故錯;當時,,故錯;當時,,故錯,故選C?!军c睛】本題考查不等式的基本性質,主要考查通過不等式性質與比較法來比較實數(shù)的大小,可借助取特殊值的方法來進行判斷,是簡單題。8、C【解析】
由向量的模公式以及數(shù)量積公式,即可得到本題答案.【詳解】因為向量,與的夾角為,所以.故選:C【點睛】本題主要考查平面向量的模的公式以及數(shù)量積公式.9、D【解析】試題分析:由于是的重心,,,代入得,整理得,,因此,故答案為D.考點:1、平面向量基本定理;2、余弦定理的應用.10、C【解析】
通過隨機數(shù)表的相關運算即可得到答案.【詳解】隨機數(shù)表第1行的第8列和第9列數(shù)字為42,由左至右選取兩個數(shù)字依次為42,36,03,14,22,選出的第5個個體的編號為22,故選C.【點睛】本題主要考查隨機數(shù)法,按照規(guī)則進行即可,難度較小.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先利用同角三角函數(shù)的商數(shù)關系可得,再結合正弦定理及余弦定理化簡可得,然后求解即可.【詳解】解:因為,則,所以,即,所以,則,即,即即,故答案為:.【點睛】本題考查了同角三角函數(shù)的商數(shù)關系,重點考查了正弦定理及余弦定理的應用,屬中檔題.12、【解析】
首先令,分別把解出來,再利用整體換元的思想即可解決.【詳解】令所以令,所以所以【點睛】本題主要考查了整體換元的思想以及對數(shù)之間的運算和公式法解一元二次方程.整體換元的思想是高中的一個重點,也是高考常考的內容需重點掌握.13、【解析】
根據(jù)一元二次不等式的解法直接求解可得結果.【詳解】由得:即不等式的解集為故答案為:【點睛】本題考查一元二次不等式的求解問題,屬于基礎題.14、【解析】
在平面中,過圓內一點的弦長何時最長,何時最短,類比在空間中,過球內一點的球的大圓面積最大,與此大圓垂直的截面小圓面積最小.利用正四面體的性質及球的性質求正四面體外接球的半徑、小圓半徑,確定答案.【詳解】因為正四面體棱長為AB=3,所以正四面體外接球半徑R=.由球的性質,當過E及球心O時的截面為球的大圓,面積最大,最大面積為;當過E的截面與EO垂直時面積最小,取△BCD的中心,因為為正四面體,所以平面BCD,O在上,,所以,在三角形中,由,,,,由余弦定理在直角三角形中所以過E且與EO垂直的截面圓的半徑r為,截面面積為.所以所求截面面積的范圍是.【點睛】本題考查空間想象能力,邏輯推理能力,空間組合體的關系,正四面體、球的性質,考查計算能力,屬于難題.15、128【解析】
觀察數(shù)陣可知:前行一共有個數(shù),且第行的最后一個數(shù)為,且第行有個數(shù),由此可推斷出所在的位置.【詳解】因為前行一共有個數(shù),且第行的最后一個數(shù)為,又因為,所以在第行,且第45行最后數(shù)為,又因為第行有個數(shù),,所以在第列,所以.故答案為:.【點睛】本題考查數(shù)列在數(shù)陣中的應用,著重考查推理能力,難度一般.分析數(shù)列在數(shù)陣中的應用問題,可從以下點分析問題:觀察每一行數(shù)據(jù)個數(shù)與行號關系,同時注意每一行開始的數(shù)據(jù)或結尾數(shù)據(jù),所有行數(shù)據(jù)的總個數(shù),注意等差數(shù)列的求和公式的運用.16、【解析】
根據(jù)題意到,聯(lián)立方程得到,得到答案.【詳解】,故.,故,故,故.故雙曲線漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線的漸近線問題,意在考查學生的計算能力和綜合應用能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】
(1)用表示,再用,表示即可;(2)由向量數(shù)量積運算及模的運算即可得解.【詳解】解:(1)因為,所以,又,,所以;(2),,且與的夾角為60°,所以,則,,故.【點睛】本題考查了向量的減法運算,重點考查了向量數(shù)量積運算及模的運算,屬基礎題.18、(1)見解析;(2)見解析.【解析】試題分析:(1)設,連接,因為O,E分別為AC,中點,所以(2)平面,所以平面平面考點:線面平行垂直的判定點評:平面內一直線與平面外一直線平行,則線面平行;直線垂直于平面內兩相交直線則直線垂直于平面,進而得到兩面垂直19、(1)海里/小時;(2)該船不改變航行方向則會進入警戒水域,理由見解析.【解析】
(1)建立直角坐標系,首先求出位置與位置的距離,然后除以經過的時間即可求出船的航行速度;(2)求出位置與位置所在直線方程,求出位置與直線的距離與1海里對比即可.【詳解】(1)如圖建立平面直角坐標系:設一個單位長度為1海里,則坐標中,,,,再由方位角可求得:,,所以,又因為12分鐘=0.2小時,則(海里/小時),所以該船行駛的速度為海里/小時;(2)直線的斜率為,所以直線的方程為:,即,所以點到直線的距離為,即該船不改變航行方向行駛時離點的距離小于1海里,所以若該船不改變航行方向則會進入警戒水域.【點睛】本題主要考查了直角坐標系中兩點間距離的計算,直線與圓的位置關系,屬于一般題.20、(1),此時自變量的集合是(2)見解析【解析】
(1)根據(jù)三角函數(shù)的性質,即可求解;(2)根據(jù)三角函數(shù)的圖形變換規(guī)律,即可得到?!驹斀狻?1),此時,,即,,即此時自變量的集合是.(2)把函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,再把函數(shù)的圖象上所有點的縱坐標不變,橫坐標變?yōu)樵?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版摩托車二手交易評估與鑒定服務合同4篇
- 2025非全日制勞務派遣合同樣本:二零二五年度用工協(xié)議3篇
- 二零二五版廠房租賃合同標準:租賃廠房周邊環(huán)境維護責任3篇
- 2025年度環(huán)保監(jiān)測軟件服務升級及數(shù)據(jù)統(tǒng)計分析合同3篇
- 2025年度補充耕地指標出讓與農業(yè)科技推廣合同3篇
- 二零二五年度古董藝術品售后服務與維權合同3篇
- 2025年度配音行業(yè)人才培養(yǎng)與輸送合同4篇
- 2025年度旅游紀念品采購合同書下載3篇
- 2025年度高速公路養(yǎng)護勞務分包合同范本
- 2025年度個人二手房交易合同樣本7篇
- 勞務協(xié)議范本模板
- 2024年全國職業(yè)院校技能大賽高職組(生產事故應急救援賽項)考試題庫(含答案)
- 2025大巴車租車合同范文
- 老年上消化道出血急診診療專家共識2024
- 人教版(2024)數(shù)學七年級上冊期末測試卷(含答案)
- 2024年國家保密培訓
- 2024年公務員職務任命書3篇
- CFM56-3發(fā)動機構造課件
- 會議讀書交流分享匯報課件-《殺死一只知更鳥》
- 2025屆撫州市高一上數(shù)學期末綜合測試試題含解析
- 公司印章管理登記使用臺賬表
評論
0/150
提交評論