版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省荊州市公安縣第三中學(xué)2025屆高一下數(shù)學(xué)期末綜合測(cè)試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,在中,已知D是邊延長(zhǎng)線上一點(diǎn),若,點(diǎn)E為線段的中點(diǎn),,則()A. B. C. D.2.等比數(shù)列的前項(xiàng)和、前項(xiàng)和、前項(xiàng)和分別為,則().A. B.C. D.3.某超市收銀臺(tái)排隊(duì)等候付款的人數(shù)及其相應(yīng)概率如下:排隊(duì)人數(shù)01234概率0.10.160.30.30.10.04則至少有兩人排隊(duì)的概率為()A.0.16 B.0.26 C.0.56 D.0.744.下列正確的是()A.若a,b∈R,則B.若x<0,則x+≥-2=-4C.若ab≠0,則D.若x<0,則2x+2-x>25.設(shè)的三個(gè)內(nèi)角成等差數(shù)列,其外接圓半徑為2,且有,則三角形的面積為()A. B. C.或 D.或6.已知,則()A.-3 B. C. D.37.圓的半徑是,則的圓心角與圓弧圍成的扇形面積是()A. B. C. D.8.函數(shù),的值域是()A. B. C. D.9.某程序框圖如圖所示,若輸出的結(jié)果為,則判斷框內(nèi)應(yīng)填入的條件可以為()A. B. C. D.10.設(shè)正實(shí)數(shù)滿足,則當(dāng)取得最大值時(shí),的最大值為()A.0 B.1 C. D.3二、填空題:本大題共6小題,每小題5分,共30分。11.已知一組數(shù)據(jù),,,的方差為,則這組數(shù)據(jù),,,的方差為_(kāi)_____.12.已知在中,角A,B,C的對(duì)邊分別為a,b,c,,,的面積等于,則外接圓的面積為_(kāi)_____.13.在銳角中,角的對(duì)邊分別為.若,則角的大小為為_(kāi)___.14.若函數(shù)的圖象過(guò)點(diǎn),則___________.15.已知角的終邊經(jīng)過(guò)點(diǎn),則的值為_(kāi)___________.16.已知正實(shí)數(shù)滿足,則的最小值為_(kāi)_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知圓的方程為,直線l的方程為,點(diǎn)P在直線l上,過(guò)點(diǎn)P作圓的切線PA,PB,切點(diǎn)為A,B.(1)若,求點(diǎn)P的坐標(biāo);(2)求證:經(jīng)過(guò)A,P,三點(diǎn)的圓必經(jīng)過(guò)異于的某個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).18.如圖所示,平面平面,四邊形為矩形,,點(diǎn)為的中點(diǎn).(1)若,求三棱錐的體積;(2)點(diǎn)為上任意一點(diǎn),在線段上是否存在點(diǎn),使得?若存在,確定點(diǎn)的位置,并加以證明;若不存在,請(qǐng)說(shuō)明理由.19.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.20.已知向量,.函數(shù)的圖象關(guān)于直線對(duì)稱,且.(1)求函數(shù)的表達(dá)式:(2)求函數(shù)在區(qū)間上的值域.21.已知函數(shù).(1)若函數(shù)的周期,且滿足,求及的遞增區(qū)間;(2)若,在上的最小值為,求的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
由,,,,代入化簡(jiǎn)即可得出.【詳解】,帶人可得,可得,故選B.【點(diǎn)睛】本題考查了向量共線定理、向量的三角形法則,考查了推理能力與計(jì)算能力,屬于中檔題.2、B【解析】
根據(jù)等比數(shù)列前項(xiàng)和的性質(zhì),可以得到等式,化簡(jiǎn)選出正確答案.【詳解】因?yàn)檫@個(gè)數(shù)列是等比數(shù)列,所以成等比數(shù)列,因此有,故本題選B.【點(diǎn)睛】本題考查了等比數(shù)列前項(xiàng)和的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.3、D【解析】
利用互斥事件概率計(jì)算公式直接求解.【詳解】由某超市收銀臺(tái)排隊(duì)等候付款的人數(shù)及其相應(yīng)概率表,得:至少有兩人排隊(duì)的概率為:.故選:D.【點(diǎn)睛】本題考查概率的求法、互斥事件概率計(jì)算公式,考查運(yùn)算求解能力,是基礎(chǔ)題.4、D【解析】對(duì)于A,當(dāng)ab<0時(shí)不成立;對(duì)于B,若x<0,則x+=-≤-2=-4,當(dāng)且僅當(dāng)x=-2時(shí),等號(hào)成立,因此B選項(xiàng)不成立;對(duì)于C,取a=-1,b=-2,+=-<a+b=-3,所以C選項(xiàng)不成立;對(duì)于D,若x<0,則2x+2-x>2成立.故選D.5、C【解析】
的三個(gè)內(nèi)角成等差數(shù)列,可得角A、C的關(guān)系,將已知條件中角C消去,利用三角函數(shù)和差角公式展開(kāi)即可求出角A的值,再由三角形面積公式即可求得三角形面積.【詳解】的三個(gè)內(nèi)角成等差數(shù)列,則,解得,所以,所以,整理得,則或,因?yàn)?,解得?①當(dāng)時(shí),;②當(dāng)時(shí),,故選C.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、等差數(shù)列性質(zhì)、三角函數(shù)和差角公式、三角函數(shù)輔助角公式,綜合性較強(qiáng),屬于中檔題;解題中主要是通過(guò)消元構(gòu)造關(guān)于角A的三角方程,其中利用三角函數(shù)和差角公式和輔助角公式對(duì)式子進(jìn)行化解是解題的關(guān)鍵.6、C【解析】
由同角三角函數(shù)關(guān)系得到余弦、正切,再由兩角差的正切公式得到結(jié)果.【詳解】已知,則,,則故答案為C.【點(diǎn)睛】這個(gè)題目考查了三角函數(shù)的化簡(jiǎn)求值,1.利用sin2α+cos2α=1可以實(shí)現(xiàn)角α的正弦、余弦的互化,利用=tanα可以實(shí)現(xiàn)角α的弦切互化;2.注意公式逆用及變形應(yīng)用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.7、C【解析】
先將化為弧度數(shù),再利用扇形面積計(jì)算公式即可得出.【詳解】所以扇形的面積為:故選:C【點(diǎn)睛】題考查了扇形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.8、A【解析】
由的范圍求出的范圍,結(jié)合余弦函數(shù)的性質(zhì)即可求出函數(shù)的值域.【詳解】∵,∴,∴當(dāng),即時(shí),函數(shù)取最大值1,當(dāng)即時(shí),函數(shù)取最小值,即函數(shù)的值域?yàn)?,故選A.【點(diǎn)睛】本題主要考查三角函數(shù)在給定區(qū)間內(nèi)求函數(shù)的值域問(wèn)題,通過(guò)自變量的范圍求出整體的范圍是解題的關(guān)鍵,屬基礎(chǔ)題.9、D【解析】
由已知可得,該程序是利用循環(huán)結(jié)構(gòu)計(jì)算輸出變量S的值,模擬過(guò)程分別求出變量的變化情況可的結(jié)果.【詳解】程序在運(yùn)行過(guò)程中,判斷框前的變量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此時(shí)應(yīng)該結(jié)束循環(huán)體,并輸出S的值為26,所以判斷框應(yīng)該填入條件為:故選D【點(diǎn)睛】本題主要考查了程序框圖,屬于基礎(chǔ)題.10、B【解析】
x,y,z為正實(shí)數(shù),且,根據(jù)基本不等式得,當(dāng)且僅當(dāng)x=2y取等號(hào),所以x=2y時(shí),取得最大值1,此時(shí),,當(dāng)時(shí),取最大值1,的最大值為1,故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用方差的性質(zhì)直接求解.【詳解】一組數(shù)據(jù),,,的方差為5,這組數(shù)據(jù),,,的方差為:.【點(diǎn)睛】本題考查方差的性質(zhì)應(yīng)用。若的方差為,則的方差為。12、4π【解析】
利用三角形面積公式求解,再利用余弦定理求得,進(jìn)而得到外接圓半徑,再求面積即可.【詳解】由,解得..解得.,解得.∴△ABC外接圓的面積為4π.故答案為:4π.【點(diǎn)睛】本題主要考查了解三角形中正余弦與面積公式的運(yùn)用,屬于基礎(chǔ)題型.13、【解析】由,兩邊同除以得,由余弦定理可得是銳角,,故答案為.14、【解析】
由過(guò)點(diǎn),求得a,代入,令,即可得到本題答案【詳解】因?yàn)榈膱D象過(guò)點(diǎn),所以,所以,故.故答案為:-5【點(diǎn)睛】本題主要考查函數(shù)的解析式及利用解析式求值.15、【解析】
由題意和任意角的三角函數(shù)的定義求出的值即可.【詳解】由題意得角的終邊經(jīng)過(guò)點(diǎn),則,所以,故答案為.【點(diǎn)睛】本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.16、6【解析】
由題得,解不等式即得x+y的最小值.【詳解】由題得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值為6.當(dāng)且僅當(dāng)x=y=3時(shí)取等.故答案為:6【點(diǎn)睛】本題主要考查基本不等式求最值,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)和;(2)和【解析】
(1)設(shè),連接,分析易得,即有,解得的值,即可得到答案.(2)根據(jù)題意,分析可得:過(guò)A,P,三點(diǎn)的圓為以為直徑的圓,設(shè)的坐標(biāo)為,用表示過(guò)A,P,三點(diǎn)的圓為,結(jié)合直線與圓的位置關(guān)系,分析可得答案.【詳解】(1)根據(jù)題意,點(diǎn)P在直線l上,設(shè),連接,因?yàn)閳A的方程為,所以圓心,半徑,因?yàn)檫^(guò)點(diǎn)P作圓的切線PA,PB,切點(diǎn)為A,B;則有,且,易得,又由,即,則,即有,解得或,即的坐標(biāo)為和.(2)根據(jù)題意,是圓的切線,則,則過(guò)A,P,三點(diǎn)的圓為以為直徑的圓,設(shè)的坐標(biāo)為,,則以為直徑的圓為,變形可得:,即,則有,解得或,則當(dāng)和,時(shí),恒成立,則經(jīng)過(guò)A,P,三點(diǎn)的圓必經(jīng)過(guò)異于的某個(gè)定點(diǎn),且定點(diǎn)的坐標(biāo)和.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系、圓中的定點(diǎn)問(wèn)題,考查學(xué)生分析問(wèn)題、解決問(wèn)題的能力,屬于中檔題.18、(1);(2)存在,為中點(diǎn),證明見(jiàn)解析.【解析】
(1)先根據(jù)面積垂直的性質(zhì)得到平面;再由題中數(shù)據(jù),結(jié)合棱錐體積公式,即可求出結(jié)果;(2)先由線面垂直的性質(zhì)得到為中點(diǎn)時(shí),有.再給出證明:取中點(diǎn),連接,,,由線面垂直的判定定理,以及面面垂直的性質(zhì)定理,證明平面,再由線面垂直的性質(zhì)定理,即可得出結(jié)果.【詳解】(1)因?yàn)樗倪呅螢榫匦?,所以,又平面平面,所以平面;又,所以,因此三棱錐的體積為:;(2)當(dāng)為中點(diǎn)時(shí),有.證明如下:取中點(diǎn),連接,,.∵為的中點(diǎn),為的中點(diǎn),∴,又∵,∴,∴四點(diǎn)共面.∵平面平面,平面平面,平面,,∴平面,又平面,∴,∵,為的中點(diǎn),∴,又,∴平面,又平面,∴,即.【點(diǎn)睛】本題主要考查求棱錐的體積,以及補(bǔ)全線線垂直的條件,熟記棱錐體積公式,以及線面垂直、面面垂直的判定定理與性質(zhì)定理即可,屬于??碱}型.19、(1)【解析】
(1)利用同角的平方關(guān)系求cos(α-β)的值;(2)利用求出,再求的值.【詳解】(1)因?yàn)?,所以cos(α-β).(2)因?yàn)閏osα=,所以,所以,因?yàn)棣隆?0,),所以.【點(diǎn)睛】本題主要考查同角的三角函數(shù)的關(guān)系求值,考查差角的余弦,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.20、(1);(2)【解析】
(1)轉(zhuǎn)化條件得,由對(duì)稱軸可得,再結(jié)合即可得解;(2)根據(jù)自變量的范圍可得,利用整體法即可得解.【詳解】(1)由題意,函數(shù)的圖象關(guān)于直線對(duì)稱,.即.又,,得,由得,故.則函數(shù)的表達(dá)式為(2),.,,則函數(shù)在區(qū)間上的值域?yàn)?【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、函數(shù)表達(dá)式和值域的確定,考查了整體意識(shí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)衛(wèi)星廣播電視接收系統(tǒng)監(jiān)測(cè)行業(yè)市場(chǎng)運(yùn)營(yíng)現(xiàn)狀研究報(bào)告
- 2025年房屋代理銷售合同2篇
- 牡丹江2024年黑龍江牡丹江市直事業(yè)單位集中選調(diào)15人筆試歷年參考題庫(kù)附帶答案詳解
- 漯河2024年河南漯河市交通運(yùn)輸局人才引進(jìn)4人筆試歷年參考題庫(kù)附帶答案詳解
- 深圳2025年上半年廣東深圳法院勞動(dòng)合同制審判輔助人員招錄109人筆試歷年參考題庫(kù)附帶答案詳解
- 淮安2024年江蘇淮安八十二醫(yī)院招聘專業(yè)技術(shù)人員13人筆試歷年參考題庫(kù)附帶答案詳解
- 武漢2025年湖北武漢市公安局招聘輔警129人筆試歷年參考題庫(kù)附帶答案詳解
- 攀枝花2025上半年四川攀枝花米易縣招聘中小學(xué)教師及財(cái)會(huì)人員50人筆試歷年參考題庫(kù)附帶答案詳解
- 大連2025年遼寧大連長(zhǎng)興島經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)中心醫(yī)院招聘168人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年山東濱州市無(wú)棣縣中政土地產(chǎn)業(yè)集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 中建集團(tuán)面試自我介紹
- 《工業(yè)園區(qū)節(jié)水管理規(guī)范》
- 警校生職業(yè)生涯規(guī)劃
- 意識(shí)障礙患者的護(hù)理診斷及措施
- 2024版《53天天練單元?dú)w類復(fù)習(xí)》3年級(jí)語(yǔ)文下冊(cè)(統(tǒng)編RJ)附參考答案
- 2025企業(yè)年會(huì)盛典
- 215kWh工商業(yè)液冷儲(chǔ)能電池一體柜用戶手冊(cè)
- 場(chǎng)地平整施工組織設(shè)計(jì)-(3)模板
- 交通設(shè)施設(shè)備供貨及技術(shù)支持方案
- 美容美發(fā)店火災(zāi)應(yīng)急預(yù)案
- 餐車移動(dòng)食材配送方案
評(píng)論
0/150
提交評(píng)論