版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東省棲霞市高一下數(shù)學期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)有直線和平面,則下列四個命題中,正確的是()A.若m∥α,n∥α,則m∥n B.若m?α,n?α,m∥β,l∥β,則α∥βC.若α⊥β,m?α,則m⊥β D.若α⊥β,m⊥β,m?α,則m∥α2.在等比數(shù)列中,,,則()A. B.3 C. D.13.函數(shù)的圖象的相鄰兩支截直線所得的線段長為,則的值是()A.0 B. C.1 D.4.奇函數(shù)在上單調(diào)遞減,且,則不等式的解集是().A. B.C. D.5.在5張電話卡中,有3張移動卡和2張聯(lián)通卡,從中任取2張,若事件“2張全是移動卡”的概率是,那么概率是的事件是()A.2張恰有一張是移動卡 B.2張至多有一張是移動卡C.2張都不是移動卡 D.2張至少有一張是移動卡6.設(shè)是兩條不同的直線,是兩個不同的平面,則下列敘述正確的是()①若,則;②若,則;③若,則;④若,則.A.①② B.③④ C.①③ D.②④7.已知分別是的內(nèi)角的的對邊,若,則的形狀為()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.等邊三角形8.設(shè)為等比數(shù)列的前n項和,若,則()A.-11 B.-8 C.5 D.119.在正方體中,直線與平面所成角的正弦值為()A. B. C. D.10.已知關(guān)于的不等式的解集為,則的值為()A.4 B.5 C.7 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在邊長為的菱形中,,為中點,則______.12.設(shè)數(shù)列滿足,,且,用表示不超過的最大整數(shù),如,,則的值用表示為__________.13.若2弧度的圓心角所對的弧長為4cm,則這個圓心角所夾的扇形的面積是______.14.項數(shù)為的等差數(shù)列,若奇數(shù)項之和為88,偶數(shù)項之和為77,則實數(shù)的值為_____.15.已知空間中的三個頂點的坐標分別為,則BC邊上的中線的長度為________.16.若點在冪函數(shù)的圖像上,則函數(shù)的反函數(shù)=________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量垂直于向量,向量垂直于向量.(1)求向量與的夾角;(2)設(shè),且向量滿足,求的最小值;(3)在(2)的條件下,隨機選取一個向量,求的概率.18.如圖,是菱形,對角線與的交點為,四邊形為梯形,,.(1)若,求證:平面;(2)求證:平面平面;(3)若,求直線與平面所成角的余弦值.19.已知四棱臺中,平面ABCD,四邊形ABCD為平行四邊形,,,,,E為DC中點.(1)求證:平面;(2)求證:;(3)求三棱錐的高.(注:棱臺的兩底面相似)20.如圖是函數(shù)的部分圖像,是它與軸的兩個不同交點,是之間的最高點且橫坐標為,點是線段的中點.(1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;(2)若時,函數(shù)的最小值為,求實數(shù)的值.21.已知圓C:(x-1)2(1)當l經(jīng)過圓心C時,求直線l的方程;(2)當弦AB被點P平分時,寫出直線l的方程
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
在A中,m與n相交、平行或異面;在B中,α與β相交或平行;在C中,m⊥β或m∥β或m與β相交;在D中,由直線與平面垂直的性質(zhì)與判定定理可得m∥α.【詳解】由直線m、n,和平面α、β,知:對于A,若m∥α,n∥α,則m與n相交、平行或異面,故A錯誤;對于B,若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交,故B錯誤;對于中,若α⊥β,α⊥β,m?α,則m⊥β或m∥β或m與β相交,故C錯誤;對于D,若α⊥β,m⊥β,m?α,則由直線與平面垂直的性質(zhì)與判定定理得m∥α,故D正確.故選D.【點睛】本題考查了命題真假的判斷問題,考查了空間線線、線面、面面的位置關(guān)系的判定定理及推論的應(yīng)用,體現(xiàn)符號語言與圖形語言的相互轉(zhuǎn)化,是中檔題.2、C【解析】
根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因為等比數(shù)列,故.故選:C【點睛】本題主要考查了等比數(shù)列性質(zhì)求解某項的方法,屬于基礎(chǔ)題.3、C【解析】
根據(jù)題意可知函數(shù)周期為,利用周期公式求出,計算即可求值.【詳解】由正切型函數(shù)的圖象及相鄰兩支截直線所得的線段長為知,,所以,,故選C.【點睛】本題主要考查了正切型函數(shù)的周期,求值,屬于中檔題.4、A【解析】
因為函數(shù)式奇函數(shù),在上單調(diào)遞減,根據(jù)奇函數(shù)的性質(zhì)得到在上函數(shù)仍是減函數(shù),再根據(jù)可畫出函數(shù)在上的圖像,根據(jù)對稱性畫出在上的圖像.根據(jù)圖像得到的解集是:.故選A.5、B【解析】
概率的事件可以認為是概率為的對立事件.【詳解】事件“2張全是移動卡”的概率是,它的對立事件的概率是,事件為“2張不全是移動卡”,也即為“2張至多有一張是移動卡”.故選B.【點睛】本題考查對立事件,解題關(guān)鍵是掌握對立事件的概率性質(zhì):即對立事件的概率和為1.6、D【解析】可以線在平面內(nèi),③可以是兩相交平面內(nèi)與交線平行的直線,②對④對,故選D.7、A【解析】
由已知結(jié)合正弦定理可得利用三角形的內(nèi)角和及誘導公式可得,整理可得從而有結(jié)合三角形的性質(zhì)可求【詳解】解:是的一個內(nèi)角,,由正弦定理可得,又,,即為鈍角,故選A.【點睛】本題主要考查了正弦定理,三角形的內(nèi)角和及誘導公式,兩角和的正弦公式,屬于基礎(chǔ)試題.8、A【解析】設(shè)數(shù)列{an}的公比為q.由8a2+a5=0,得a1q(8+q3)=0.又∵a1q≠0,∴q=-2.∴===-11.故選A.9、C【解析】
由題,連接,設(shè)其交平面于點易知平面,即(或其補角)為與平面所成的角,再利用等體積法求得AO的長度,即可求得的長度,可得結(jié)果.【詳解】設(shè)正方體的邊長為1,如圖,連接,設(shè)其交平面于點,則易知,,又,所以平面,即得平面.在三棱錐中,由等體積法知,,即,解得,所以.連接,則(或其補角)為與平面所成的角.在中,.故選C.【點睛】本題考查了立體幾何中線面角的求法,作出線面角是解題的關(guān)鍵,求高的長度會用到等體積法,屬于中檔題.10、D【解析】
將原不等式化簡后,根據(jù)不等式的解集列方程組,求得的值,進而求得的值.【詳解】由得,依題意上述不等式的解集為,故,解得(舍去),故.故選:D.【點睛】本小題主要考查類似:已知一元二次不等式解集求參數(shù),考查函數(shù)與方程的思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
選取為基底,根據(jù)向量的加法減法運算,利用數(shù)量積公式計算即可.【詳解】因為,,,又,.【點睛】本題主要考查了向量的加法減法運算,向量的數(shù)量積,屬于中檔題.12、【解析】
由題設(shè)可得知該函數(shù)的最小正周期是,令,則由等差數(shù)列的定義可知數(shù)列是首項為,公差為的等差數(shù)列,即,由此可得,將以上個等式兩邊相加可得,即,所以,故,應(yīng)填答案.點睛:解答本題的關(guān)鍵是借助題設(shè)中提供的數(shù)列遞推關(guān)系式,先求出數(shù)列的通項公式,然后再運用列項相消法求出,最后借助題設(shè)中提供的新信息,求出使得問題獲解.13、【解析】
先求出扇形的半徑,再求這個圓心角所夾的扇形的面積.【詳解】設(shè)扇形的半徑為R,由題得.所以扇形的面積為.故答案為:【點睛】本題主要考查扇形的半徑和面積的計算,意在考查學生對這些知識的理解掌握水平.14、7【解析】
奇數(shù)項和偶數(shù)項相減得到和,故,代入公式計算得到答案.【詳解】由題意知:,前式減后式得到:,后式減前式得到故:解得故答案為:7【點睛】本題考查了等差數(shù)列的奇數(shù)項和與偶數(shù)項和關(guān)系,通過變換得到是解題的關(guān)鍵.15、【解析】
先求出BC的中點,由此能求出BC邊上的中線的長度.【詳解】解:因為空間中的三個頂點的坐標分別為,所以BC的中點為,所以BC邊上的中線的長度為:,故答案為:.【點睛】本題考查三角形中中線長的求法,考查中點坐標公式、兩點間距離的求法等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.16、【解析】
根據(jù)函數(shù)經(jīng)過點求出冪函數(shù)的解析式,利用反函數(shù)的求法,即可求解.【詳解】因為點在冪函數(shù)的圖象上,所以,解得,所以冪函數(shù)的解析式為,則,所以原函數(shù)的反函數(shù)為.故答案為:【點睛】本題主要考查了冪函數(shù)的解析式的求法,以及反函數(shù)的求法,其中熟記反函數(shù)的求法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】
(1)根據(jù)向量的垂直,轉(zhuǎn)化出方程組,求解方程組即可;(2)將向量賦予坐標,求得向量對應(yīng)點的軌跡方程,將問題轉(zhuǎn)化為圓外一點,到圓上一點的距離的最值問題,即可求解;(3)根據(jù)余弦定理,解得,以及的臨界狀態(tài)時,對應(yīng)的圓心角的大小,利用幾何概型的概率計算公式,即可求解.【詳解】(1)因為故可得,解得①②由①-②可得,解得,將其代入①可得,即將其代入②可得解得,又向量夾角的范圍為,故向量與的夾角為.(2)不妨設(shè),由可得.不妨設(shè)的起始點為坐標原點,終點為C.因此,點C落在以)為圓心,1為半徑的圓上(如圖).因為,即由圓的特點可知的最小值為,即:.(3)當時,因為,,滿足勾股定理,故容易得.當時,假設(shè)此時點落在如圖所示的F點處.如圖所示.因為,由余弦定理容易得,故.所以,本題化為,在半圓上任取一點C,點C落在弧CF上的概率.由幾何概型的概率計算可知:的概率即為圓心角的弧度除以,即.【點睛】本題考查向量垂直時數(shù)量積的表示,以及利用解析的手段解決向量問題的能力,還有幾何概型的概率計算,涉及圓方程的求解,以及余弦定理.本題屬于綜合題,值得總結(jié).18、(1)證明見解析;(2)證明見解析;(3)【解析】
(1)取的中點,連接,,從而可得為平行四邊形,即可證明平面;(2)只需證明平面.即可證明平面平面;(3)作于,則為與平面所成角,在中,由余弦定理得即可.【詳解】(1)證明:取的中點,連接,,∵是菱形的對角線,的交點,∴,且,又∵,且,∴,且,從而為平行四邊形,∴,又平面,平面,∴平面;(2)∵四邊形為菱形,∴,∵,是的中點,∴,又,∴平面,又平面,∴平面平面;(3)作于,∵平面平面,∴平面,則為與平面所成角,由及四邊形為菱形,得為正三角形,則,,,∴為正三角形,從而,在中,由余弦定理,得,∴與平面所成角的余弦值為.【點睛】本題主要考查了空間線面位置關(guān)系、線面角的計算,屬于中檔題.19、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)連結(jié),可證四邊形為平行四邊形,故可證平面;(2)連結(jié)BD,在中運用余弦定理可得:,利用勾股定理和線面垂直的性質(zhì),可得平面,因此可證;(3)根據(jù)題意,不難求,再利用即可求三棱錐的高.【詳解】(1)證明:連結(jié),因為為四棱臺,所以,又因為四邊形ABCD為平行四邊形,,,所以,又,且,∴四邊形為平行四邊形,,又平面,平面,平面.(2)證明:連結(jié)BD,在中運用余弦定理可得:,∴由勾股定理逆定理得,即.又平面ABCD,,平面,所以.(3)在中,,,,所以,故.由(1)知,由(2)知,,所以.在中,由勾股定理得,在中,由,可得,設(shè)O為DB的中點,連結(jié),則,且,又,所以,由勾股定理得,在中,因為,,,所以,即,故,設(shè)所求棱錐的高為h,則,所以.【點睛】本題考查線面平行、線線垂直的證明,棱錐的高,考查了三棱錐體積計算公式,利用體積轉(zhuǎn)化法求高,屬于中等題.20、(1)(2)【解析】
(1)由點是線段的中點,可得和的坐標,從而得最值和周期,可得和,再代入頂點坐標可得,再利用整體換元可求單調(diào)區(qū)間;(2)令得到,討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特種貴重物品搬運協(xié)議細則
- 2024年版房屋拆遷補償合同
- 2024年版權(quán)許可使用合同協(xié)議
- 中專老師的工作計劃范文
- 文明校園活動策劃書(匯編15篇)
- 入職自我介紹集錦15篇
- 無源探測技術(shù)課程設(shè)計
- 植樹節(jié)活動總結(jié)15篇
- 收銀員的辭職報告范文集合10篇
- 小學數(shù)學骨干教師工作計劃
- 有關(guān)原始股權(quán)買賣協(xié)議書通用(7篇)
- GB 31247-2014電纜及光纜燃燒性能分級
- 新舊公司法對照表
- 井底車場及硐室課件
- 小學生法制安全教育演講稿6篇
- DL 5190.8-2019 電力建設(shè)施工技術(shù)規(guī)范 第8部分:加工配制
- 2023年邢臺市眼科醫(yī)院醫(yī)護人員招聘筆試模擬試題及答案解析
- 開放是當代中國的鮮明標識 教學設(shè)計-高中政治統(tǒng)編版選擇性必修一
- 三級醫(yī)院醫(yī)療設(shè)備配置標準
- 幼兒園繪本故事:《想暖和的雪人》 課件
- 化纖織造行業(yè)-生產(chǎn)工藝流程簡介課件
評論
0/150
提交評論