![吳忠高級(jí)中學(xué)新高考適應(yīng)性考試數(shù)學(xué)試卷及答案解析_第1頁(yè)](http://file4.renrendoc.com/view2/M00/3D/3A/wKhkFmZs6F2ABh55AAHfin8hxU4233.jpg)
![吳忠高級(jí)中學(xué)新高考適應(yīng)性考試數(shù)學(xué)試卷及答案解析_第2頁(yè)](http://file4.renrendoc.com/view2/M00/3D/3A/wKhkFmZs6F2ABh55AAHfin8hxU42332.jpg)
![吳忠高級(jí)中學(xué)新高考適應(yīng)性考試數(shù)學(xué)試卷及答案解析_第3頁(yè)](http://file4.renrendoc.com/view2/M00/3D/3A/wKhkFmZs6F2ABh55AAHfin8hxU42333.jpg)
![吳忠高級(jí)中學(xué)新高考適應(yīng)性考試數(shù)學(xué)試卷及答案解析_第4頁(yè)](http://file4.renrendoc.com/view2/M00/3D/3A/wKhkFmZs6F2ABh55AAHfin8hxU42334.jpg)
![吳忠高級(jí)中學(xué)新高考適應(yīng)性考試數(shù)學(xué)試卷及答案解析_第5頁(yè)](http://file4.renrendoc.com/view2/M00/3D/3A/wKhkFmZs6F2ABh55AAHfin8hxU42335.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吳忠高級(jí)中學(xué)新高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.2.已知菱形的邊長(zhǎng)為2,,則()A.4 B.6 C. D.3.已知點(diǎn),若點(diǎn)在曲線上運(yùn)動(dòng),則面積的最小值為()A.6 B.3 C. D.4.已知三棱錐且平面,其外接球體積為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.6.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.7.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或88.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.9.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.10.對(duì)于定義在上的函數(shù),若下列說(shuō)法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對(duì)于,都有11.已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說(shuō)法錯(cuò)誤的是()A.該超市2018年的12個(gè)月中的7月份的收益最高B.該超市2018年的12個(gè)月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長(zhǎng)了90萬(wàn)元12.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為,斜率為2的直線與的交點(diǎn)為,若,則直線的方程為_(kāi)__________.14.若函數(shù)為奇函數(shù),則_______.15.已知圓柱的上下底面的中心分別為,過(guò)直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為_(kāi)___16.已知向量,滿足,,,則向量在的夾角為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)當(dāng)時(shí),求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點(diǎn),連接,并延長(zhǎng)交直線于,兩點(diǎn),已知,求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).19.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設(shè)直線l:y=kx+m與橢圓C交于A,B兩點(diǎn).①若A為橢圓的上頂點(diǎn),M為線段AB中點(diǎn),連接OM并延長(zhǎng)交橢圓C于N,并且ON=62OM,求OB的長(zhǎng);②若原點(diǎn)O到直線l的距離為1,并且20.(12分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值21.(12分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.22.(10分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點(diǎn)分別為、,焦距為2,直線與橢圓交于兩點(diǎn)(均異于橢圓的左、右頂點(diǎn)).當(dāng)直線過(guò)橢圓的右焦點(diǎn)且垂直于軸時(shí),四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過(guò)定點(diǎn);②若直線過(guò)橢圓的右焦點(diǎn),試判斷是否為定值,并說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.2、B【解析】
根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【詳解】如圖所示,菱形形的邊長(zhǎng)為2,,∴,∴,∴,且,∴,故選B.【點(diǎn)睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問(wèn)題,屬于基礎(chǔ)題..3、B【解析】
求得直線的方程,畫(huà)出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點(diǎn)到直線的距離公式和兩點(diǎn)的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點(diǎn)為圓心,1為半徑的下半圓(包括兩個(gè)端點(diǎn)),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時(shí),到直線距離最短,即為,則的面積的最小值為.故選:B.【點(diǎn)睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點(diǎn)到直線距離的最小值,這由數(shù)形結(jié)合思想易得.4、A【解析】
由,平面,可將三棱錐還原成長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而求解.【詳解】由題,因?yàn)?所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長(zhǎng)方體,則三棱錐的外接球即為長(zhǎng)方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點(diǎn)睛】本題考查三棱錐的外接球體積,考查空間想象能力.5、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過(guò)循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問(wèn)題,是求和還是求項(xiàng).6、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對(duì)選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)?,在上為增函?shù),不符合.B選項(xiàng),的定義域?yàn)椋环?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.7、B【解析】
根據(jù)函數(shù)的對(duì)稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對(duì)稱,又,所以或,所以的值是7或3.故選:B.【點(diǎn)睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對(duì)稱性問(wèn)題,屬基礎(chǔ)題8、A【解析】
求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)椋士傻?,令,因?yàn)?,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.9、D【解析】
由題意畫(huà)出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過(guò)求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.10、B【解析】
根據(jù)函數(shù)對(duì)稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對(duì)稱,若關(guān)于對(duì)稱,則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿足條件.故錯(cuò)誤的是,故選:.【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對(duì)稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.11、D【解析】
用收入減去支出,求得每月收益,然后對(duì)選項(xiàng)逐一分析,由此判斷出說(shuō)法錯(cuò)誤的選項(xiàng).【詳解】用收入減去支出,求得每月收益(萬(wàn)元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項(xiàng)說(shuō)法正確;月收益最低,B選項(xiàng)說(shuō)法正確;月總收益萬(wàn)元,月總收益萬(wàn)元,所以前個(gè)月收益低于后六個(gè)月收益,C選項(xiàng)說(shuō)法正確,后個(gè)月收益比前個(gè)月收益增長(zhǎng)萬(wàn)元,所以D選項(xiàng)說(shuō)法錯(cuò)誤.故選D.【點(diǎn)睛】本小題主要考查圖表分析,考查收益的計(jì)算方法,屬于基礎(chǔ)題.12、D【解析】試題分析:先畫(huà)出可行域如圖:由,得,由,得,當(dāng)直線過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線性規(guī)劃.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點(diǎn)橫坐標(biāo)的關(guān)系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設(shè)直線.由題設(shè)得,故,由題設(shè)可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點(diǎn)睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡(jiǎn)單幾何性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.14、-2【解析】
由是定義在上的奇函數(shù),可知對(duì)任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域?yàn)?,是奇函數(shù),則,即對(duì)任意的,都成立,故,整理得,解得.故答案為:.【點(diǎn)睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.15、【解析】
由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因?yàn)檩S截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點(diǎn)睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.16、【解析】
把平方利用數(shù)量積的運(yùn)算化簡(jiǎn)即得解.【詳解】因?yàn)椋?,,所以,∴,∴,因?yàn)樗?故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【解析】
(1)當(dāng)時(shí),分類討論把不等式化為等價(jià)不等式組,即可求解.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,分類討論,即可求解.【詳解】(1)當(dāng)時(shí),,不等式可化為或或,解得不等式的解集為.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,所以當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【點(diǎn)睛】本題主要考查了含絕對(duì)值的不等式的求解,以及絕對(duì)值三角不等式的應(yīng)用,其中解答中熟記含絕對(duì)值不等式的解法,以及合理應(yīng)用絕對(duì)值的三角不等式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18、(1)(2)證明見(jiàn)解析;定點(diǎn)坐標(biāo)為【解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時(shí)滿足∴∴直線恒過(guò)定點(diǎn)【點(diǎn)睛】涉及橢圓的弦長(zhǎng)、中點(diǎn)、距離等相關(guān)問(wèn)題時(shí),一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.19、(1)x22+y2【解析】
(1)根據(jù)橢圓的幾何性質(zhì)可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長(zhǎng)公式可求得弦長(zhǎng)AB,利用點(diǎn)到直線的距離公式求得原點(diǎn)到直線l的距離,從而可求得三角形面積,再用單調(diào)性求最值可得值域.【詳解】(1)因?yàn)閮山裹c(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成等腰直角三角形,所以a=2又由右準(zhǔn)線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設(shè)B(x1,y1∵ON=6因?yàn)辄c(diǎn)B,N都在橢圓上,所以x122+y12所以O(shè)B=x②由原點(diǎn)O到直線l的距離為1,得|m|1+k2聯(lián)立直線l的方程與橢圓C的方程:y=kx+mx2設(shè)A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因?yàn)镾=2λ(1-λ)在[并且當(dāng)λ=45時(shí),S=225所以△OAB的面積S的范圍為[10【點(diǎn)睛】圓錐曲線中最值與范圍問(wèn)題的常見(jiàn)求法:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征和意義,則考慮利用圖形性質(zhì)來(lái)解決;(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值.在利用代數(shù)法解決最值與范圍問(wèn)題時(shí)常從以下幾個(gè)方面考慮:①利用判別式來(lái)構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用隱含或已知的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍;③利用基本不等式求出參數(shù)的取值范圍;④利用函數(shù)的值域的求法,確定參數(shù)的取值范圍.20、(1)證明見(jiàn)解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個(gè)平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點(diǎn),連接.∵,∴為的中點(diǎn).又為的中點(diǎn),∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,,,,,,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的證明和空間坐標(biāo)法解決二面角的問(wèn)題,意在考查空間想象能力,推理證明和計(jì)算能力,屬于中檔題型,證明線面平行,或證明面面平行時(shí),關(guān)鍵是證明線線平行,所以做輔助線或證明時(shí),需考慮構(gòu)造中位線或平行四邊形,這些都是證明線線平行的常方法.21、(1)證明見(jiàn)詳解;(2)【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點(diǎn)O,連接、,可得,可求出.在中,由勾股定理可證得,結(jié)合,可證明平面.再根據(jù)面面垂直的判定定理,可證平面平面.(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由點(diǎn)F在線段上,設(shè),得出的坐標(biāo),進(jìn)而求出平面的一個(gè)法向量.用向量法表示出與平面所成角的正弦值,由其等于,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保材料在辦公室裝修中的應(yīng)用與效果評(píng)估報(bào)告
- 托育合同范本(2篇)
- 2025年度智能穿戴設(shè)備研發(fā)企業(yè)股權(quán)收購(gòu)意向協(xié)議
- 2025年度口腔診所醫(yī)生崗位責(zé)任制與考核合同
- 2025年衛(wèi)生院聘用合同樣本-醫(yī)療管理崗位勞動(dòng)合同規(guī)范
- 二零二五年度2025年度解除反聘銷售代表合同協(xié)議
- 二零二五年度知識(shí)產(chǎn)權(quán)法律咨詢與知識(shí)產(chǎn)權(quán)金融合同
- 2025-2030年文化節(jié)慶主題堅(jiān)果禮盒企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年商場(chǎng)顧客尋人機(jī)器人行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年提拉米蘇拿鐵咖啡行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 《黑神話:悟空》跨文化傳播策略與路徑研究
- 《古希臘文明》課件
- 居家養(yǎng)老上門服務(wù)投標(biāo)文件
- 長(zhǎng)沙市公安局交通警察支隊(duì)招聘普通雇員筆試真題2023
- 2025年高考語(yǔ)文作文滿分范文6篇
- 零售業(yè)連鎖加盟合同
- 2025高考語(yǔ)文復(fù)習(xí)之60篇古詩(shī)文原文+翻譯+賞析+情景默寫(xiě)
- 成長(zhǎng)型思維課件
- 2024-2025學(xué)年物理人教版八年級(jí)上冊(cè)-6.4-密度的應(yīng)用-課件
- 礦山應(yīng)急管理培訓(xùn)
- 維吾爾醫(yī)優(yōu)勢(shì)病種
評(píng)論
0/150
提交評(píng)論