2025屆湖南省武岡二中高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2025屆湖南省武岡二中高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2025屆湖南省武岡二中高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2025屆湖南省武岡二中高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2025屆湖南省武岡二中高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆湖南省武岡二中高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知各項(xiàng)均不為零的數(shù)列,定義向量,,.下列命題中真命題是()A.若對(duì)任意的,都有成立,則數(shù)列是等差數(shù)列B.若對(duì)任意的,都有成立,則數(shù)列是等比數(shù)列C.若對(duì)任意的,都有成立,則數(shù)列是等差數(shù)列D.若對(duì)任意的,都有成立,則數(shù)列是等比數(shù)列2.已知正數(shù)滿足,則的最小值是()A.9 B.10 C.11 D.123.設(shè)△的內(nèi)角所對(duì)的邊為,,,,則()A. B.或 C. D.或4.已知的內(nèi)角、、的對(duì)邊分別為、、,邊上的高為,且,則的最大值是()A. B. C. D.5.已知正四面體ABCD中,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為()A. B. C. D.6.?dāng)?shù)列中,若,則下列命題中真命題個(gè)數(shù)是()(1)若數(shù)列為常數(shù)數(shù)列,則;(2)若,數(shù)列都是單調(diào)遞增數(shù)列;(3)若,任取中的項(xiàng)構(gòu)成數(shù)列的子數(shù)(),則都是單調(diào)數(shù)列.A.個(gè) B.個(gè) C.個(gè) D.個(gè)7.設(shè),,,則()A. B. C. D.8.給出下列命題:(1)存在實(shí)數(shù)使.(2)直線是函數(shù)圖象的一條對(duì)稱軸.(3)的值域是.(4)若都是第一象限角,且,則.其中正確命題的題號(hào)為()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)9.在x軸上的截距為2且傾斜角為135°的直線方程為().A.y=-x+2 B.y=-x-2 C.y=x+2 D.y=x-210.在中,若,則此三角形為()三角形.A.等腰 B.直角 C.等腰直角 D.等腰或直角二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角所對(duì)的邊分別為.若,,則角的大小為____________________.12.若函數(shù),則__________.13.已知(),則________.(用表示)14.如圖,正方體中,的中點(diǎn)為,的中點(diǎn)為,為棱上一點(diǎn),則異面直線與所成角的大小為__________.15.若一個(gè)圓錐的高和底面直徑相等且它的體積為,則此圓錐的側(cè)面積為______.16.已知單位向量與的夾角為,且,向量與的夾角為,則=.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)當(dāng)時(shí),求函數(shù)的值域.18.已知A、B分別在射線CM、CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC19.如圖,在半徑為、圓心角為的扇形的弧上任取一點(diǎn),作扇形的內(nèi)接矩形,使點(diǎn)在上,點(diǎn)在上,設(shè)矩形的面積為,(1)按下列要求寫出函數(shù)的關(guān)系式:①設(shè),將表示成的函數(shù)關(guān)系式;②設(shè),將表示成的函數(shù)關(guān)系式,(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求出的最大值.20.已知平面向量,=(2x+3,-x),(x∈R).(1)若向量與向量垂直,求;(2)若與夾角為銳角,求的取值范圍.21.已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和,求證:

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

根據(jù)向量平行的坐標(biāo)表示,得到,利用累乘法,求得,從而可作出判定,得到答案.【詳解】由題意知,向量,,,當(dāng)時(shí),可得,即,所以,所以數(shù)列表示首項(xiàng)為,公差為的等差數(shù)列.當(dāng),可得,即,所以,所以數(shù)列既不是等差數(shù)列,也不是等比數(shù)列.故選A.【點(diǎn)睛】本題主要考查了向量的平行關(guān)系的坐標(biāo)表示,等差數(shù)列的定義,以及“累乘法”求解通項(xiàng)公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、A【解析】

利用基本不等式可得,然后解出即可.【詳解】解:正數(shù),滿足,∴,,,當(dāng)且僅當(dāng)時(shí)取等號(hào),的最小值為9,故選:A.【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用和一元二次不等式的解法,屬于基礎(chǔ)題.3、B【解析】試題分析:因?yàn)?,,,由正弦定理,因?yàn)槭侨切蔚膬?nèi)角,且,所以,故選B.考點(diǎn):正弦定理4、C【解析】

由余弦定理化簡可得,利用三角形面積公式可得,解得,利用正弦函數(shù)的圖象和性質(zhì)即可得解其最大值.【詳解】由余弦定理可得:,故:,而,故,所以:.故選.【點(diǎn)睛】本題主要考查了余弦定理,三角形面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.5、B【解析】試題分析:如圖,取中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),則,或其補(bǔ)角就是異面直線所成的角,設(shè)正四面體棱長為1,則,,.故選B.考點(diǎn):異面直線所成的角.【名師點(diǎn)睛】求異面直線所成的角的關(guān)鍵是通過平移使其變?yōu)橄嘟恢本€所成角,但平移哪一條直線、平移到什么位置,則依賴于特殊的點(diǎn)的選取,選取特殊點(diǎn)時(shí)要盡可能地使它與題設(shè)的所有相減條件和解題目標(biāo)緊密地聯(lián)系起來.如已知直線上的某一點(diǎn),特別是線段的中點(diǎn),幾何體的特殊線段.6、C【解析】

對(duì)(1),由數(shù)列為常數(shù)數(shù)列,則,解方程可得的值;對(duì)(2),由函數(shù),,求得導(dǎo)數(shù)和極值,可判斷單調(diào)性;對(duì)(3),由,判斷奇偶性和單調(diào)性,結(jié)合正弦函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】數(shù)列中,若,,,(1)若數(shù)列為常數(shù)數(shù)列,則,解得或,故(1)不正確;(2)若,,,由函數(shù),,,由,可得極值點(diǎn)唯一且為,極值為,由,可得,則,即有.由于,,由正弦函數(shù)的單調(diào)性,可得,則數(shù)列都是單調(diào)遞增數(shù)列,故(2)正確;(3)若,任取中的9項(xiàng),,,,,構(gòu)成數(shù)列的子數(shù)列,,2,,9,是單調(diào)遞增數(shù)列;由,可得,為奇函數(shù);當(dāng)時(shí),,時(shí),;當(dāng)時(shí),;時(shí),,運(yùn)用正弦函數(shù)的單調(diào)性可得或時(shí),數(shù)列單調(diào)遞增;或時(shí),數(shù)列單調(diào)遞減.所以數(shù)列都是單調(diào)數(shù)列,故(3)正確;故選:C.【點(diǎn)睛】本題考查數(shù)列的單調(diào)性的判斷和運(yùn)用,考查正弦函數(shù)的單調(diào)性,以及分類討論思想方法,屬于難題.7、B【解析】

根據(jù)與特殊點(diǎn)的比較可得因?yàn)?,,從而得到,得出答案.【詳解】解:因?yàn)?,,所以.故選:B【點(diǎn)睛】本題主要考查指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的問題,要熟記一些特殊點(diǎn),如,,.8、C【解析】

(1)化簡求值域進(jìn)行判斷;(2)根據(jù)函數(shù)的對(duì)稱性可判斷;(3)根據(jù)余弦函數(shù)的圖像性質(zhì)可判斷;(4)利用三角函數(shù)線可進(jìn)行判斷.【詳解】解:(1),(1)錯(cuò)誤;(2)是函數(shù)圖象的一個(gè)對(duì)稱中心,(2)錯(cuò)誤;(3)根據(jù)余弦函數(shù)的性質(zhì)可得的最大值為,,其值域是,(3)正確;(4)若都是第一象限角,且,利用三角函數(shù)線有,(4)正確.故選.【點(diǎn)睛】本題考查正弦函數(shù)與余弦函數(shù)、正切函數(shù)的性質(zhì),以及三角函數(shù)線定義,著重考查學(xué)生綜合運(yùn)用三角函數(shù)的性質(zhì)分析問題、解決問題的能力,屬于中檔題.9、A【解析】直線的斜率為tan135°=-1,由點(diǎn)斜式求得直線的方程為y=-x+b,將截?fù)?jù)y=0,x=2代入方程,解得b=2,所以,可得y=-x+2,故答案為A10、B【解析】

由條件結(jié)合正弦定理即可得到,由此可得三角形的形狀.【詳解】由于在中,有,根據(jù)正弦定理可得;所以此三角形為直角三角形;、故答案選B【點(diǎn)睛】本題主要考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】本題考查了三角恒等變換、已知三角函數(shù)值求角以及正弦定理,考查了同學(xué)們解決三角形問題的能力.由得,所以由正弦定理得,所以A=或(舍去)、12、【解析】

根據(jù)分段函數(shù)的解析式先求,再求即可.【詳解】因?yàn)?,所?【點(diǎn)睛】本題主要考查了分段函數(shù)求值問題,解題的關(guān)鍵是將自變量代入相應(yīng)范圍的解析式中,屬于基礎(chǔ)題.13、【解析】

根據(jù)同角三角函數(shù)之間的關(guān)系,結(jié)合角所在的象限,即可求解.【詳解】因?yàn)?,所以,故,解得,又,,所?故填.【點(diǎn)睛】本題主要考查了同角三角函數(shù)之間的關(guān)系,三角函數(shù)在各象限的符號(hào),屬于中檔題.14、【解析】

根據(jù)題意得到直線MP運(yùn)動(dòng)起來構(gòu)成平面,可得到面,進(jìn)而得到結(jié)果.【詳解】取的中點(diǎn)O連接,,根據(jù)題意可得到直線MP是一條動(dòng)直線,當(dāng)點(diǎn)P變動(dòng)時(shí)直線就構(gòu)成了平面,因?yàn)镸O均為線段的中點(diǎn),故得到,四邊形為平行四邊形,面,故得到,又面,進(jìn)而得到.故夾角為.故答案為.【點(diǎn)睛】這個(gè)題目考查的是異面直線的夾角的求法;常見方法有:將異面直線平移到同一平面內(nèi),轉(zhuǎn)化為平面角的問題;或者證明線面垂直進(jìn)而得到面面垂直,這種方法適用于異面直線垂直的時(shí)候.15、【解析】

先由圓錐的體積公式求出圓錐的底面半徑,再結(jié)合圓錐的側(cè)面積公式求解即可.【詳解】解:設(shè)圓錐的底面半徑為,則圓錐的高為,母線長為,由圓錐的體積為,則,即,則此圓錐的側(cè)面積為.故答案為:.【點(diǎn)睛】本題考查了圓錐的體積公式,重點(diǎn)考查了圓錐的側(cè)面積公式,屬基礎(chǔ)題.16、【解析】試題分析:因?yàn)樗钥键c(diǎn):向量數(shù)量積及夾角三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);.(2).【解析】

(1)根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算、三角恒等變換先求出函數(shù)的解析式即可由三角函數(shù)的性質(zhì)求出函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)對(duì)于形如的值域問題,要先求出的范圍,再根據(jù)正弦函數(shù)的性質(zhì)逐步求解即可.【詳解】(1)由已知可得,,,令,解之得,所以函數(shù)的單調(diào)遞減區(qū)間為(2)因?yàn)?,?dāng)時(shí),,此時(shí),,所以函數(shù)的值域?yàn)?【點(diǎn)睛】本題主要考查平面向量數(shù)量積的坐標(biāo)運(yùn)算、三角恒等變換及三角函數(shù)的周期、單調(diào)區(qū)間、值域的求法,試題綜合性強(qiáng),屬中等難度題.18、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結(jié)合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周長f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.試題解析:(Ⅰ)∵a、b、c成等差,且公差為1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等變形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周長f(θ)=|AC|+|BC|+|AB|=,又,當(dāng),即時(shí),f(θ)取得最大值.考點(diǎn):1.余弦定理;1.正弦定理19、(Ⅰ),;(Ⅱ).【解析】試題分析:(1)①通過求出矩形的邊長,求出面積的表達(dá)式;②利用三角函數(shù)的關(guān)系,求出矩形的鄰邊,求出面積的表達(dá)式;(2)利用(1)②的表達(dá)式,化為一個(gè)角的一個(gè)三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值.試題解析:(1)①因?yàn)椋?,所以,.②?dāng)時(shí),,則,又,所以,所以,().(2)由②得,,當(dāng)時(shí),取得最大值為.考點(diǎn):1.三角函數(shù)中的恒等變換;2.兩角和與差的正弦函數(shù).【方法點(diǎn)睛】本題主要考查的是函數(shù)解析式的求法,三角函數(shù)的最值的確定,三角函數(shù)公式的靈活運(yùn)用,計(jì)算能力,屬于中檔題,此題是課本題目的延伸,如果(2)選擇(1)①中的解析式,需要用到導(dǎo)數(shù)求解,麻煩,不是命題者的本意,因此正確的選擇是選擇(1)②中的解析式,化成一個(gè)角的一個(gè)三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值,此類題目選擇正確的解析式是求解容易與否的關(guān)鍵.20、(1)10或2;(2).【解析】

(1)由向量與向量垂直,求得或,進(jìn)而求得的坐標(biāo),利用模的計(jì)算公式,即可求解;(2)因?yàn)榕c夾角為銳角,所以,且與不共線,列出不等關(guān)系式,即可求解.【詳解】(1)由題意,平面向量,,由向量與向量垂直,則,解得或,當(dāng)時(shí),,則,所;當(dāng)時(shí),,則,所,(2)因?yàn)?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論