版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省西安市碑林區(qū)鐵一中學(xué)2025屆高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的圖象是()A. B. C. D.2.如果,那么下列不等式錯誤的是()A. B.C. D.3.若一元二次不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.4.不等式的解集是A. B.C.或 D.5.為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.已知函數(shù),則()A.2 B.-2 C.1 D.-17.將的圖像怎樣移動可得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位8.已知,且,那么a,b,,的大小關(guān)系是()A. B.C. D.9.已知兩點,,直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.或10.某中學(xué)舉行英語演講比賽,如圖是七位評委為某位學(xué)生打出分?jǐn)?shù)的莖葉圖,去掉一個最高分和一個最低分,所剩數(shù)據(jù)的中位數(shù)和平均數(shù)分別為()A.84,85 B.85,84 C.84,85.2 D.86,85二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,若∠A=120°,AB=5,BC=7,則△ABC的面積S=_____.12.已知數(shù)列的首項,其前項和為,且,若單調(diào)遞增,則的取值范圍是__________.13.已知數(shù)列的前n項和,則數(shù)列的通項公式是______.14.中,內(nèi)角,,所對的邊分別是,,,且,,則的值為__________.15.設(shè)為正偶數(shù),,則____________.16.若集合,,則集合________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求在區(qū)間上的最大值和最小值.18.已知:三點,其中.(1)若三點在同一條直線上,求的值;(2)當(dāng)時,求.19.已知關(guān)于的一元二次函數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的一次項系數(shù).(1)若,,求函數(shù)有零點的概率;(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.20.(1)從某廠生產(chǎn)的一批零件1000個中抽取20個進行研究,應(yīng)采用什么抽樣方法?(2)對(1)中的20個零件的直徑進行測量,得到下列不完整的頻率分布表:(單位:mm)分組頻數(shù)頻率268合計201①完成頻率分布表;②畫出其頻率分布直方圖.21.已知函數(shù)f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;(3)是否存在實數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
求出分段函數(shù)的解析式,由此確定函數(shù)圖象.【詳解】由于,根據(jù)函數(shù)解析式可知,D選項符合.故選:D【點睛】本小題主要考查分段函數(shù)圖象的判斷,屬于基礎(chǔ)題.2、A【解析】
利用不等式的性質(zhì)或比較法對各選項中不等式的正誤進行判斷.【詳解】,,,則,,可得出,因此,A選項錯誤,故選:A.【點睛】本題考查判斷不等式的正誤,常利用不等式的性質(zhì)或比較法來進行判斷,考查推理能力,屬于基礎(chǔ)題.3、A【解析】
該不等式為一元二次不等式,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,從而可得關(guān)于參數(shù)的不等式組,解之可得結(jié)果.【詳解】不等式為一元二次不等式,故,根據(jù)一元二次函數(shù)的圖象與性質(zhì)可得,的圖象是開口向下且與x軸沒有交點,則,解不等式組,得.故本題正確答案為A.【點睛】本題考查一元二次不等式恒成立問題,考查一元二次函數(shù)的圖象與性質(zhì),注意數(shù)形結(jié)合的運用,屬基礎(chǔ)題.4、B【解析】試題分析:∵,∴,即,∴不等式的解集為.考點:分式不等式轉(zhuǎn)化為一元二次不等式.5、C【解析】
利用誘導(dǎo)公式,的圖象變換規(guī)律,得出結(jié)論.【詳解】為了得到函數(shù)的圖象,
只需將函數(shù)圖象上所有的點向左平移個單位長度,
故選C.6、B【解析】
根據(jù)分段函數(shù)的表達(dá)式,直接代入即可得到結(jié)論.【詳解】由分段函數(shù)的表達(dá)式可知,則,故選:.【點睛】本題主要考查函數(shù)值的計算,根據(jù)分段函數(shù)的表達(dá)式求解是解決本題的關(guān)鍵,屬于容易題.7、C【解析】
因為將向左平移個單位可以得到,得解.【詳解】解:將向左平移個單位可以得到,故選C.【點睛】本題考查了函數(shù)圖像的平移變換,屬基礎(chǔ)題.8、D【解析】
直接用作差法比較它們的大小得解.【詳解】;;.故.故選:D【點睛】本題主要考查了作差法比較實數(shù)的大小,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.9、D【解析】
作出示意圖,再結(jié)合兩點間的斜率公式,即可求得答案.【詳解】,,又直線過點且與線段相交,作圖如下:則由圖可知,直線的斜率的取值范圍是:或.故選:D【點睛】本題借直線與線段的交點問題,考查兩點間的斜率公式,考查理解辨析能力,屬于中檔題.10、A【解析】
剩余數(shù)據(jù)為:84.84,86,84,87,計算中位數(shù)和平均數(shù).【詳解】剩余數(shù)據(jù)為:84.84,86,84,87則中位數(shù)為:84平均數(shù)為:故答案為A【點睛】本題考查了中位數(shù)和平均數(shù)的計算,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
用余弦定理求出邊的值,再用面積公式求面積即可.【詳解】解:據(jù)題設(shè)條件由余弦定理得,即,即解得,故的面積,故答案為:.【點睛】本題主要考查余弦定理解三角形,考查三角形的面積公式,屬于基礎(chǔ)題.12、【解析】由可得:兩式相減得:兩式相減可得:數(shù)列,,...是以為公差的等差數(shù)列,數(shù)列,,...是以為公差的等差數(shù)列將代入及可得:將代入可得要使得,恒成立只需要即可解得則的取值范圍是點睛:本題考查了數(shù)列的遞推關(guān)系求通項,在含有的條件中,利用來求通項,本題利用減法運算求出數(shù)列隔一項為等差數(shù)列,結(jié)合和數(shù)列為增數(shù)列求出結(jié)果,本題需要利用條件遞推,有一點難度.13、【解析】
時,,利用時,可得,最后驗證是否滿足上式,不滿足時候,要寫成分段函數(shù)的形式.【詳解】當(dāng)時,,當(dāng)時,=,又時,不適合,所以.【點睛】本題考查了由求,注意使用求時的條件是,所以求出后還要驗證適不適合,如果適合,要將兩種情況合成一種情況作答,如果不適合,要用分段函數(shù)的形式作答.屬于中檔題.14、4【解析】
利用余弦定理變形可得,從而求得結(jié)果.【詳解】由余弦定理得:本題正確結(jié)果:【點睛】本題考查余弦定理的應(yīng)用,關(guān)鍵是能夠熟練應(yīng)用的變形,屬于基礎(chǔ)題.15、【解析】
得出的表達(dá)式,然后可計算出的表達(dá)式.【詳解】,,因此,.故答案為:.【點睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,考查項的變化,考查計算能力,屬于基礎(chǔ)題.16、【解析】由題意,得,,則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】
(1)利用二倍角余弦、正弦公式以及輔助角公式將函數(shù)的解析式化簡,然后利用周期公式可計算出函數(shù)的最小正周期;(2)由計算出的取值范圍,然后利用正弦函數(shù)的性質(zhì)可得出函數(shù)在區(qū)間上的最大值和最小值.【詳解】(1),因此,函數(shù)的最小正周期為;(2),,當(dāng)時,函數(shù)取得最小值;當(dāng)時,函數(shù)取得最大值.【點睛】本題考查三角函數(shù)周期和最值的計算,同時也考查了利用二倍角公式以及輔助角公式化簡,在求解三角函數(shù)在定區(qū)間上的最值問題時,首先應(yīng)計算出對象角的取值范圍,結(jié)合同名三角函數(shù)的基本性質(zhì)來計算,考查分析問題和解決問題的能力,屬于中等題.18、(1)(2)【解析】
(1)利用共線向量的特點求解m;(2)先利用求解m,再求解.【詳解】(1)依題有:,共線.(2)由得:又【點睛】本題主要考查平面向量的應(yīng)用,利用共線向量可以證明三點共線問題,利用向量可以解決長度問題.19、(1);(2)【解析】
(1)依次列出所有可能的情況,求出滿足的情況總數(shù),即可得到概率;(2)列出不等關(guān)系,表示出平面區(qū)域,求出滿足表示的區(qū)域的面積,即可得到概率.【詳解】(1)由題可得,,從集合中隨機取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的一次項系數(shù),記為,這樣的有序數(shù)對共有,9種情況;函數(shù)有零點,即滿足,滿足條件的有:,6種情況,所以其概率為;(2),滿足條件的有序數(shù)對,,即平面直角坐標(biāo)系內(nèi)區(qū)域:矩形及內(nèi)部區(qū)域,面積為4,函數(shù)在區(qū)間上是增函數(shù),即滿足,,,即,平面直角坐標(biāo)系內(nèi)區(qū)域:直角梯形及內(nèi)部區(qū)域,面積為3,所以其概率為.【點睛】此題考查古典概型與幾何概型,關(guān)鍵在于準(zhǔn)確得出二次函數(shù)有零點和在區(qū)間上是增函數(shù),分別所對應(yīng)的基本事件個數(shù)以及對應(yīng)區(qū)域的面積.20、(1)系統(tǒng)抽樣;(2)①分布表見解析;②直方圖見解析.【解析】
(1)因需要研究的個體很多,且差異不明顯,適宜用系統(tǒng)抽樣.(2)①直接計算頻率即可.②根據(jù)①中計算出的數(shù)據(jù),用每一組的頻率/組距作為縱坐標(biāo),即可做出頻率分布直方圖.【詳解】某廠生產(chǎn)的一批零件1000個,差異不明顯,且因需要研究的個體很多.
所以適宜用系統(tǒng)抽樣.(2)①頻率分布表為分組頻數(shù)頻率20.160.380.440.2合計201②頻率分布直方圖為.分組頻數(shù)頻率頻率/組距20.10.0260.30.0680.40.0840.20.04合計201【點睛】本題考查頻率分布表和根據(jù)頻率分布表繪制頻率分布直方圖,屬于基礎(chǔ)題.21、(1){x|x≤-1或x=1};(2);(3).【解析】試題分析:(1)把代入函數(shù)解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段寫出函數(shù)的解析式,由在上單調(diào)遞增,則需第一段二次函數(shù)的對稱軸小于等于,第二段一次函數(shù)的一次項系數(shù)大于0,且第二段函數(shù)的最大值小于等于第一段函數(shù)的最小值,聯(lián)立不等式組后求解的取值范圍;(3)把不等式對一切實數(shù)恒成立轉(zhuǎn)化為函數(shù)對一切實數(shù)恒成立,然后對進行分類討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年融資租賃反擔(dān)保合同(教育設(shè)備)3篇
- 2024英倫游學(xué)夏令營導(dǎo)師團隊配置與教學(xué)質(zhì)量保障合同3篇
- 遼寧廣告職業(yè)學(xué)院《金融風(fēng)險管理實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江省衢州市2024年中考數(shù)學(xué)一模試卷含答案
- 開封職業(yè)學(xué)院《體育消費者行為學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇科技大學(xué)蘇州理工學(xué)院《國際項目招標(biāo)管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉利學(xué)院《田徑規(guī)則與裁判法》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南理工學(xué)院南湖學(xué)院《青少年社會工作》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北師范大學(xué)文理學(xué)院《邊境社會治理》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】《浮力》(教學(xué)設(shè)計)-2024-2025學(xué)年人教版(2024)初中物理八年級下冊
- GB/T 9978.5-2008建筑構(gòu)件耐火試驗方法第5部分:承重水平分隔構(gòu)件的特殊要求
- 上海紐約大學(xué)自主招生面試試題綜合素質(zhì)答案技巧
- 辦公家具項目實施方案、供貨方案
- 2022年物流服務(wù)師職業(yè)技能競賽理論題庫(含答案)
- ?;钒踩僮饕?guī)程
- 連鎖遺傳和遺傳作圖
- DB63∕T 1885-2020 青海省城鎮(zhèn)老舊小區(qū)綜合改造技術(shù)規(guī)程
- 高邊坡施工危險源辨識及分析
- 中海地產(chǎn)設(shè)計管理程序
- 簡譜視唱15942
- 《城鎮(zhèn)燃?xì)庠O(shè)施運行、維護和搶修安全技術(shù)規(guī)程》(CJJ51-2006)
評論
0/150
提交評論