吉林省梅河口五中等聯(lián)誼校2025屆數(shù)學高一下期末教學質量檢測試題含解析_第1頁
吉林省梅河口五中等聯(lián)誼校2025屆數(shù)學高一下期末教學質量檢測試題含解析_第2頁
吉林省梅河口五中等聯(lián)誼校2025屆數(shù)學高一下期末教學質量檢測試題含解析_第3頁
吉林省梅河口五中等聯(lián)誼校2025屆數(shù)學高一下期末教學質量檢測試題含解析_第4頁
吉林省梅河口五中等聯(lián)誼校2025屆數(shù)學高一下期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省梅河口五中等聯(lián)誼校2025屆數(shù)學高一下期末教學質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,已知a,b,c分別為,,所對的邊,且a,b,c成等差數(shù)列,,,則()A. B. C. D.2.如圖所示,向量,則()A. B. C. D.3.函數(shù)()的部分圖象如圖所示,若,且,則()A.1 B. C. D.4.某學校隨機抽取20個班,調查各班中有網上購物經歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時,所作的頻率分布直方圖是()A. B.C. D.5.設,為兩個平面,則能斷定∥的條件是()A.內有無數(shù)條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面6.在等差數(shù)列中,若前項的和,,則()A. B. C. D.7.設有直線和平面,則下列四個命題中,正確的是()A.若m∥α,n∥α,則m∥n B.若m?α,n?α,m∥β,l∥β,則α∥βC.若α⊥β,m?α,則m⊥β D.若α⊥β,m⊥β,m?α,則m∥α8.下列函數(shù)中,既是偶函數(shù)又在上是單調遞減的是A. B. C. D.9.已知向量,,若,則的值為()A. B.1 C. D.10.已知,則的值為()A. B. C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知點在直線上,則的最小值為__________.12.函數(shù)且的圖象恒過定點A,若點A在直線上(其中m,n>0),則的最小值等于__________.13.關于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關于點對稱;④y=f(x)的圖象關于直線x=﹣對稱.其中正確的命題的序號是.14.如圖,正方體中,的中點為,的中點為,為棱上一點,則異面直線與所成角的大小為__________.15.在中,,點在邊上,若,的面積為,則___________16.已知正實數(shù)x,y滿足,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.計算:(1)(2)(3)18.我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調查,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照,,分成9組,制成了如圖所示的頻率分布直方圖.(1)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù)說明理由;(2)估計居民月均用水量的中位數(shù).19.已知數(shù)列滿足,();(1)求、、;(2)猜想數(shù)列的通項公式;(3)用數(shù)學歸納法證明你的猜想;20.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關,現(xiàn)采集到某城市周一至周五某一時間段車流量與PM2.5的數(shù)據(jù)如下表:時間周一周二周三周四周五車流量×(萬輛)5051545758PM2.5的濃度(微克/立方米)6070747879(1)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;(2)若周六同一時間段的車流量是25萬輛,試根據(jù)(1)求出的線性回歸方程,預測此時PM2.5的濃度為多少(保留整數(shù))?參考公式:由最小二乘法所得回歸直線的方程是:,其中,21.已知是圓的直徑,垂直圓所在的平面,是圓上任一點.求證:平面⊥平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用成等差數(shù)列可得,再利用余弦定理構造的結構再代入求得即可.【詳解】由成等差數(shù)列可得,由余弦定理有,即,解得,即.故選:B【點睛】本題主要考查了等差中項與余弦定理的運算,需要根據(jù)題意構造與的結構代入求解.屬于中檔題.2、A【解析】

根據(jù)平面向量的加法的幾何意義、平面向量的基本定理、平面向量數(shù)乘運算的性質,結合進行求解即可.【詳解】.故選:A【點睛】本題考查了平面向量基本定理及加法運算的幾何意義,考查了平面向量數(shù)乘運算的性質,屬于基礎題.3、D【解析】

由三角函數(shù)的圖象求得,再根據(jù)三角函數(shù)的圖象與性質,即可求解.【詳解】由圖象可知,,即,所以,即,又因為,則,解得,又由,所以,所以,又因為,所以圖中的最高點坐標為.結合圖象和已知條件可知,所以,故選D.【點睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質的應用,其中解答中熟記三角函數(shù)的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、A【解析】由于頻率分布直方圖的組距為5,去掉C、D,又[0,5),[5,10)兩組各一人,去掉B,應選A.5、C【解析】

對四個選項逐個分析,可得出答案.【詳解】對于選項A,當,相交于直線時,內有無數(shù)條直線與平行,即A錯誤;對于選項B,當,相交于直線時,存在直線滿足:既與平行又不在兩平面內,該直線平行于,,故B錯誤;對于選項C,設直線AB垂直于,平面,垂足分別為A,B,假設與不平行,設其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【點睛】本題考查了面面平行的判斷,考查了學生的空間想象能力,屬于中檔題.6、C【解析】試題分析:.考點:等差數(shù)列的基本概念.7、D【解析】

在A中,m與n相交、平行或異面;在B中,α與β相交或平行;在C中,m⊥β或m∥β或m與β相交;在D中,由直線與平面垂直的性質與判定定理可得m∥α.【詳解】由直線m、n,和平面α、β,知:對于A,若m∥α,n∥α,則m與n相交、平行或異面,故A錯誤;對于B,若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交,故B錯誤;對于中,若α⊥β,α⊥β,m?α,則m⊥β或m∥β或m與β相交,故C錯誤;對于D,若α⊥β,m⊥β,m?α,則由直線與平面垂直的性質與判定定理得m∥α,故D正確.故選D.【點睛】本題考查了命題真假的判斷問題,考查了空間線線、線面、面面的位置關系的判定定理及推論的應用,體現(xiàn)符號語言與圖形語言的相互轉化,是中檔題.8、B【解析】

可先確定奇偶性,再確定單調性.【詳解】由題意A、B、C三個函數(shù)都是偶函數(shù),D不是偶函數(shù)也不是奇函數(shù),排除D,A中在上不單調,C中在是遞增,只有B中函數(shù)在上遞減.故選B.【點睛】本題考查函數(shù)的奇偶性與單調性,解題時可分別確定函數(shù)的這兩個性質.9、B【解析】

直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點睛】本題考查向量的數(shù)量積的應用,考查計算能力,屬于基礎題.10、B【解析】

根據(jù)兩角和的正切公式,結合,可以求出的值,用同角的三角函數(shù)的關系式中的平方和關系把等式變成分子、分母的齊次式形式,最后代入求值即可.【詳解】..故選:B【點睛】本題考查了同角的三角函數(shù)關系式的應用,考查了二倍角的正弦公式,考查了兩角和的正切公式,考查了數(shù)學運算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】

由題得表示點到點的距離,再利用點到直線的距離求解.【詳解】由題得表示點到點的距離.又∵點在直線上,∴的最小值等于點到直線的距離,且.【點睛】本題主要考查點到兩點間的距離和點到直線的距離的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.12、1【解析】

由題意可得定點,,把要求的式子化為,利用基本不等式求得結果.【詳解】解:且令解得,則即函數(shù)過定點,又點在直線上,,則,當且僅當時,等號成立,故答案為:1.【點睛】本題考查基本不等式的應用,函數(shù)圖象過定點問題,把要求的式子化為,是解題的關鍵,屬于基礎題.13、①③【解析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關于點對稱,③正確④不正確;故答案為①③.14、【解析】

根據(jù)題意得到直線MP運動起來構成平面,可得到面,進而得到結果.【詳解】取的中點O連接,,根據(jù)題意可得到直線MP是一條動直線,當點P變動時直線就構成了平面,因為MO均為線段的中點,故得到,四邊形為平行四邊形,面,故得到,又面,進而得到.故夾角為.故答案為.【點睛】這個題目考查的是異面直線的夾角的求法;常見方法有:將異面直線平移到同一平面內,轉化為平面角的問題;或者證明線面垂直進而得到面面垂直,這種方法適用于異面直線垂直的時候.15、【解析】

由,的面積為可以求解出三角形,再通過,我們可以得出(兩三角形等高)再利用正弦形式表示各自面積,即能得出的值.【詳解】,的面積為,所以為等邊三角形,又所以(等高),又所以填寫2【點睛】已知三角形面積及一邊一角,我們能把形成該角的另外一邊算出,從而把三角形所有量都能計算出來(如果需要),求兩角正弦值的比值,我們更多聯(lián)想到正弦定理的公式,或面積公式.16、4【解析】

將變形為,展開,利用基本不等式求最值.【詳解】解:,當時等號成立,又,得,此時等號成立,故答案為:4.【點睛】本題考查基本不等式求最值,特別是掌握“1”的妙用,是基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

利用誘導公式,對每一道題目進行化簡求值.【詳解】(1)原式.(2)原式.(3)原式.【點睛】在使用誘導公式時,注意“奇變偶不變,符號看象限”法則的應用,即輔助角為的奇數(shù)倍,函數(shù)名要改變;若為的偶數(shù)倍,函數(shù)名不改變.18、(1)3.6萬;(2)2.06.【解析】

(1)由頻率分布直方圖的性質,求得,利用頻率分布直方圖求得月均用水量不低于3噸的頻率為,進而得到樣本中月均用水量不低于3噸的戶數(shù);(2)根據(jù)頻率分布直方圖,利用中位數(shù)的定義,即可求解.【詳解】(1)由頻率分布直方圖的性質,可得,即,解得,又由頻率分布直方圖可得月均用水量不低于3噸的頻率為,即樣本中月均用水量不低于3噸的戶數(shù)為萬.(2)根據(jù)頻率分布直方圖,得:,則,所以中位數(shù)應在組內,即,所以中位數(shù)是.【點睛】本題主要考查了頻率分布直方圖的性質,以及頻率分布直方圖中位數(shù)的求解及應用,其中解答中熟記頻率分布直方圖的性質和中位數(shù)的計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1),,;(2);(3)證明見解析;【解析】

(1)根據(jù)數(shù)列的遞推關系式,代入運算,即可求解、、;(2)由(1)可猜想得;(3)利用數(shù)學歸納法,即可證得猜想是正確的.【詳解】(1)由題意,數(shù)列滿足,();所以,,;(2)由(1)可猜想得;(3)①當時,,上式成立;②假設當時,成立,則當時,由①②可得,當時,成立,即數(shù)列的通項公式為.【點睛】本題主要考查了數(shù)列的遞推關系式的應用,以及數(shù)學歸納法的證明,其中解答中根據(jù)數(shù)列的遞推公式,準確計算,同時熟記數(shù)學歸納法的證明方法是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.20、(1);(2)37【解析】

(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論