上海市閔行區(qū)2025屆高一數(shù)學第二學期期末綜合測試模擬試題含解析_第1頁
上海市閔行區(qū)2025屆高一數(shù)學第二學期期末綜合測試模擬試題含解析_第2頁
上海市閔行區(qū)2025屆高一數(shù)學第二學期期末綜合測試模擬試題含解析_第3頁
上海市閔行區(qū)2025屆高一數(shù)學第二學期期末綜合測試模擬試題含解析_第4頁
上海市閔行區(qū)2025屆高一數(shù)學第二學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

上海市閔行區(qū)2025屆高一數(shù)學第二學期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于A.-10 B.-8 C.-6 D.-42.設復數(shù)(是虛數(shù)單位),則在復平面內(nèi),復數(shù)對應的點的坐標為()A. B. C. D.3.已知數(shù)列滿足,則()A.10 B.20 C.100 D.2004.已知是非零向量,若,且,則與的夾角為()A. B. C. D.5.點直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或6.數(shù)列的通項,其前項之和為,則在平面直角坐標系中,直線在軸上的截距為()A.-10 B.-9 C.10 D.97.下列結(jié)論正確的是()A. B.若,則C.當且時, D.8.設集合,則()A. B. C. D.9.在x軸上的截距為2且傾斜角為135°的直線方程為().A.y=-x+2 B.y=-x-2 C.y=x+2 D.y=x-210.化簡結(jié)果為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某中學為了了解全校學生的閱讀情況,在全校采用隨機抽樣的方法抽取一個樣本進行問卷調(diào)查,并將他們在一個月內(nèi)去圖書館的次數(shù)進行了統(tǒng)計,將學生去圖書館的次數(shù)分為5組:制作了如圖所示的頻率分布表,則抽樣總?cè)藬?shù)為_______.12.某課題組進行城市空氣質(zhì)量調(diào)查,按地域把24個城市分成甲、乙、丙三組,對應的城市數(shù)分別為4,12,8,若用分層抽樣抽取6個城市,則丙組中應抽取的城市數(shù)為_______.13.數(shù)列滿足下列條件:,且對于任意正整數(shù),恒有,則______.14.設的內(nèi)角、、的對邊分別為、、,且滿足.則______.15.已知數(shù)列中,,,設,若對任意的正整數(shù),當時,不等式恒成立,則實數(shù)的取值范圍是______.16.在△中,,,,則_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內(nèi)角,,的對邊分別為,,,已知.(1)求角;(2)若,求面積的最大值.18.已知,,且(1)求的定義域.(2)判斷的奇偶性,并說明理由.19.在三棱柱中,平面ABC,,,D,E分別為AB,中點.(Ⅰ)求證:平面;(Ⅱ)求證:四邊形為平行四邊形;(Ⅲ)求證:平面平面.20.設數(shù)列的前項和為,點均在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).21.已知是同一平面內(nèi)的三個向量,其中為單位向量.(Ⅰ)若//,求的坐標;(Ⅱ)若與垂直,求與的夾角.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:有題可知,a1,a3,a4成等比數(shù)列,則有,又因為{an}是等差數(shù)列,故有,公差d=2,解得;考點:?等差數(shù)列通項公式?等比數(shù)列性質(zhì)2、A【解析】,所以復數(shù)對應的點為,故選A.3、C【解析】

由題可得數(shù)列是以為首相,為公差的等差數(shù)列,求出數(shù)列的通項公式,進而求出【詳解】因為,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以,則【點睛】本題考查由遞推公式證明數(shù)列是等差數(shù)列以及等差數(shù)列的通項公式,屬于一般題.4、D【解析】

由得,這樣可把且表示出來.【詳解】∵,∴,,∴,∴,故選D.【點睛】本題考查向量的數(shù)量積,掌握數(shù)量積的定義是解題關鍵.5、C【解析】

直線經(jīng)過定點,斜率為,數(shù)形結(jié)合利用直線的斜率公式,求得實數(shù)的取值范圍,得到答案.【詳解】如圖所示,直線經(jīng)過定點,斜率為,當直線經(jīng)過點時,則,當直線經(jīng)過點時,則,所以實數(shù)的取值范圍,故選C.【點睛】本題主要考查了直線過定點問題,以及直線的斜率公式的應用,著重考查了數(shù)形結(jié)合法,以及推理與運算能力,屬于基礎題.6、B【解析】試題分析:因為數(shù)列的通項公式為,所以其前項和為,令,所以直線方程為,令,解得,即直線在軸上的截距為,故選B.考點:數(shù)列求和及直線方程.7、D【解析】

利用不等式的性質(zhì)進行分析,對錯誤的命題可以舉反例說明.【詳解】當時,A不正確;,則,B錯誤;當時,,,C錯誤;由不等式的性質(zhì)正確.故選:D.【點睛】本題考查不等式的性質(zhì),掌握不等式性質(zhì)是解題關鍵.可通過反例說明命題錯誤.8、B【解析】

先求得集合,再結(jié)合集合的交集的概念及運算,即可求解.【詳解】由題意,集合,所以.故選:B.【點睛】本題主要考查了集合的交集的運算,其中解答中正確求解集合B,結(jié)合集合的交集的概念與運算求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、A【解析】直線的斜率為tan135°=-1,由點斜式求得直線的方程為y=-x+b,將截據(jù)y=0,x=2代入方程,解得b=2,所以,可得y=-x+2,故答案為A10、A【解析】

根據(jù)指數(shù)冪運算法則進行化簡即可.【詳解】本題正確選項:【點睛】本題考查指數(shù)冪的運算,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、20【解析】

總體人數(shù)占的概率是1,也可以理解成每個人在整體占的比重一樣,所以三組的頻率為:,共有14人,即14人占了整體的0.7,那么整體共有人。【詳解】前三組,即三組的頻率為:,,解得:【點睛】此題考查概率,通過部分占總體的概率即可計算出總體的樣本值,屬于簡單題目。12、2【解析】

根據(jù)抽取6個城市作為樣本,得到每個個體被抽到的概率,用概率乘以丙組的數(shù)目,即可得到結(jié)果.【詳解】城市有甲、乙、丙三組,對應的城市數(shù)分別為4,12,8.

本市共有城市數(shù)24,用分層抽樣的方法從中抽取一個容量為6的樣本,

每個個體被抽到的概率是,丙組中對應的城市數(shù)8,則丙組中應抽取的城市數(shù)為,故答案為2.【點睛】本題主要考查分層抽樣的應用以及古典概型概率公式的應用,屬于基礎題.分層抽樣適合總體中個體差異明顯,層次清晰的抽樣,其主要性質(zhì)是,每個層次,抽取的比例相同.13、512【解析】

直接由,可得,這樣推下去,再帶入等比數(shù)列的求和公式即可求得結(jié)論?!驹斀狻抗蔬xC。【點睛】利用遞推式的特點,反復帶入遞推式進行計算,發(fā)現(xiàn)規(guī)律,求出結(jié)果,本題是一道中等難度題目。14、4【解析】

解法1有題設及余弦定理得.故.解法2如圖4,過點作,垂足為.則,.由題設得.又,聯(lián)立解得,.故.解法3由射影定理得.又,與上式聯(lián)立解得,.故.15、【解析】∵,(,),當時,,,…,,并項相加,得:,

∴,又∵當時,也滿足上式,

∴數(shù)列的通項公式為,∴

,令(),則,∵當時,恒成立,∴在上是增函數(shù),

故當時,,即當時,,對任意的正整數(shù),當時,不等式恒成立,則須使,即對恒成立,即的最小值,可得,∴實數(shù)的取值范圍為,故答案為.點睛:本題考查數(shù)列的通項及前項和,涉及利用導數(shù)研究函數(shù)的單調(diào)性,考查運算求解能力,注意解題方法的積累,屬于難題通過并項相加可知當時,進而可得數(shù)列的通項公式,裂項、并項相加可知,通過求導可知是增函數(shù),進而問題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.16、【解析】

利用余弦定理求得的值,進而求得的大小.【詳解】由余弦定理得,由于,故.【點睛】本小題主要考查余弦定理解三角形,考查特殊角的三角函數(shù)值,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由邊角互化整理后,即可求得角C;(2)由余弦定理,結(jié)合均值不等式,求解的最大值,代入面積即可.【詳解】(1)由正弦定理得,,,,因為,所以,所以,即,所以.(2)由余弦定理可得:即,所以,當且僅當時,取得最大值為.【點睛】本題考查解三角形中的邊角互化,以及利用余弦定理及均值不等式求三角形面積的最值問題,屬綜合中檔題.18、(1);(2)偶函數(shù),理由見解析.【解析】

(1)根據(jù)對數(shù)的真數(shù)大于零可求得和的定義域,取交集可得定義域;(2)整理可得,驗證得,得到函數(shù)為偶函數(shù).【詳解】(1)令得:定義域為令得:定義域為的定義域為(2)由題意得:,為定義在上的偶函數(shù)【點睛】本題考查函數(shù)定義域的求解、奇偶性的判斷;求解函數(shù)定義域的關鍵是明確對數(shù)函數(shù)要求真數(shù)必須大于零,且需保證構(gòu)成函數(shù)的每個部分都有意義.19、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

(Ⅰ)只需證明,,即可得平面;(Ⅱ)可得四邊形為平行四邊形,,,即可得四邊形為平行四邊形;(Ⅲ)易得平面,即可得平面平面.【詳解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分別為、的中點,∴,,即四邊形為平行四邊形,∴,,∴四邊形為平行四邊形.(Ⅲ)∵,為中點,∴,又∵,且,∴平面,而平面,∴平面平面.【點睛】本題考查了空間點、線、面位置關系,屬于基礎題.20、(Ⅰ)(Ⅱ)10【解析】

解:(I)依題意得,即.當n≥2時,;當所以.(II)由(I)得,故=.因此,使得<成立的m必須滿足,故滿足要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論