2025屆重慶市江津區(qū)高數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第1頁
2025屆重慶市江津區(qū)高數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第2頁
2025屆重慶市江津區(qū)高數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第3頁
2025屆重慶市江津區(qū)高數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第4頁
2025屆重慶市江津區(qū)高數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆重慶市江津區(qū)高數(shù)學(xué)高一下期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在ΔABC中,角A,B,C的對邊分別為a,b,c,若sinA4a=A.-45 B.35 C.2.已知點A(-1,1)和圓C:(x﹣5)2+(y﹣7)2=4,一束光線從A經(jīng)x軸反射到圓C上的最短路程是A.6-2 B.8 C.4 D.103.在中,點滿足,則()A. B.C. D.4.在△ABC中,三個頂點分別為A(2,4),B(﹣1,2),C(1,0),點P(x,y)在△ABC的內(nèi)部及其邊界上運動,則y﹣x的最小值是()A.﹣3 B.﹣1 C.1 D.35.在空間中,有三條不重合的直線,,,兩個不重合的平面,,下列判斷正確的是A.若∥,∥,則∥ B.若,,則∥C.若,∥,則 D.若,,∥,則∥6.在四邊形中,,且·=0,則四邊形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形7.直線的傾斜角為()A. B. C. D.8.由小到大排列的一組數(shù)據(jù),,,,,其中每個數(shù)據(jù)都小于,那么對于樣本,,,,,的中位數(shù)可以表示為()A. B. C. D.9.已知,,,,則()A. B. C.或 D.或10.已知甲、乙兩組數(shù)據(jù)用莖葉圖表示如圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,則圖中的的比值等于A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在正方體中,是的中點,連接、,則異面直線、所成角的正弦值為_______.12.若點為圓的弦的中點,則弦所在的直線的方程為___________.13.如圖所示,E,F(xiàn)分別是邊長為1的正方形的邊BC,CD的中點,將其沿AE,AF,EF折起使得B,D,C三點重合.則所圍成的三棱錐的體積為___________.14.?dāng)?shù)列中,為的前項和,若,則____.15.若2弧度的圓心角所對的弧長為4cm,則這個圓心角所夾的扇形的面積是______.16.一個社會調(diào)查機構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出80人作進(jìn)一步調(diào)查,則在[1500,2000)(元)月收入段應(yīng)抽出人.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,滿足,數(shù)列滿足.(1)求數(shù)列、的通項公式;(2),求數(shù)列的前項和;(3)對任意的正整數(shù),是否存在正整數(shù),使得?若存在,請求出的所有值;若不存在,請說明理由.18.已知數(shù)列的前項和為,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項公式;(2)令,若對恒成立,求的取值范圍.19.已知圓關(guān)于直線對稱,半徑為,且圓心在第一象限.(Ⅰ)求圓的方程;(Ⅱ)若直線與圓相交于不同兩點、,且,求實數(shù)的值.20.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點.(1)證明:;(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.21.在平面直角坐標(biāo)系中,已知點,,坐標(biāo)分別為,,,為線段上一點,直線與軸負(fù)半軸交于點,直線與交于點.(1)當(dāng)點坐標(biāo)為時,求直線的方程;(2)求與面積之和的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由正弦定理可得3sinBsinA=4sin【詳解】∵sinA4a∵sinA>0,∴tanB=4故選:B.【點睛】本題考查了正弦定理和同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.2、B【解析】

點A(﹣1,1)關(guān)于x軸的對稱點B(﹣1,﹣1)在反射光線上,當(dāng)反射光線過圓心時,光線從點A經(jīng)x軸反射到圓周C的路程最短,最短為|BC|﹣R.【詳解】由反射定律得點A(﹣1,1)關(guān)于x軸的對稱點B(﹣1,﹣1)在反射光線上,當(dāng)反射光線過圓心時,最短距離為|BC|﹣R=﹣2=10﹣2=1,故光線從點A經(jīng)x軸反射到圓周C的最短路程為1.故選B.【點睛】本題考查光線的反射定律的應(yīng)用,以及兩點間的距離公式的應(yīng)用.3、D【解析】

因為,所以,即;故選D.4、B【解析】

根據(jù)線性規(guī)劃的知識求解.【詳解】根據(jù)線性規(guī)劃知識,的最小值一定在的三頂點中的某一個處取得,分別代入的坐標(biāo)可得的最小值是.故選B.【點睛】本題考查簡單的線性規(guī)劃問題,屬于基礎(chǔ)題.5、C【解析】

根據(jù)空間中點、線、面的位置關(guān)系的判定與性質(zhì),逐項判定,即可求解,得到答案.【詳解】由題意,A中,若∥,∥,則與可能平行、相交或異面,故A錯誤;B中,若,,則與c可能平行,也可能垂直,比如墻角,故B錯誤;C中,若,∥,則,正確;D中,若,,∥,則與可能平行或異面,故D錯誤;故選C.【點睛】本題主要考查了線面位置關(guān)系的判定與證明,其中解答中熟記空間中點、線、面的位置關(guān)系,以及線面位置關(guān)系的判定定理和性質(zhì)定理是解答的關(guān)鍵,著重考查了推理與論證能力,屬于中檔試題.6、A【解析】

由可得四邊形為平行四邊形,由·=0得四邊形的對角線垂直,故可得四邊形為菱形.【詳解】∵,∴與平行且相等,∴四邊形為平行四邊形.又,∴,即平行四邊形的對角線互相垂直,∴平行四邊形為菱形.故選A.【點睛】本題考查向量相等和向量數(shù)量積的的應(yīng)用,解題的關(guān)鍵是正確理解有關(guān)的概念,屬于基礎(chǔ)題.7、C【解析】

由直線方程求出直線的斜率,即得傾斜角的正切值,從而求出傾斜角.【詳解】設(shè)直線的傾斜角為,由,得:,故中直線的斜率,∵,∴;故選C.【點睛】本題考查了直線的傾斜角與斜率的問題,是基礎(chǔ)題.8、C【解析】

根據(jù)不等式的基本性質(zhì),對樣本數(shù)據(jù)按從小到大排列為,取中間的平均數(shù).【詳解】,,則該組樣本的中位數(shù)為中間兩數(shù)的平均數(shù),即.【點睛】考查基本不等式性質(zhì)運用和中位數(shù)的定義.9、B【解析】

先根據(jù)角的范圍及平方關(guān)系求出和,然后可算出,進(jìn)而可求出【詳解】因為,,,所以,,所以,所以因為,所以故選:B【點睛】在由三角函數(shù)的值求角時,應(yīng)根據(jù)角的范圍選擇合適的三角函數(shù),以免產(chǎn)生多的解.10、A【解析】

從莖葉圖提取甲、乙兩組數(shù)據(jù)中的原始數(shù)據(jù),并按從小到大排列,分別得到中位數(shù),并計算各自的平均數(shù),再根據(jù)中位數(shù)、平均值相等得到關(guān)于的方程.【詳解】甲組數(shù)據(jù):,中位數(shù)為,乙組數(shù)據(jù):,中位數(shù)為:,所以,所以,故選A.【點睛】本題考查中位數(shù)、平均數(shù)的概念與計算,對甲組數(shù)據(jù)排序時,一定是最大,乙組數(shù)據(jù)中一定是最小.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

作出圖形,設(shè)正方體的棱長為,取的中點,連接、,推導(dǎo)出,并證明出,可得出異面直線、所成的角為,并計算出、,可得出,進(jìn)而得解.【詳解】如下圖所示,設(shè)正方體的棱長為,取的中點,連接、,為的中點,則,,且,為的中點,,,在正方體中,且,則四邊形為平行四邊形,,所以,異面直線、所成的角為,在中,,,.因此,異面直線、所成角的正弦值為.故答案為:.【點睛】本題考查異面直線所成角的正弦值的計算,考查計算能力,屬于中等題.12、;【解析】

利用垂徑定理,即圓心與弦中點連線垂直于弦.【詳解】圓標(biāo)準(zhǔn)方程為,圓心為,,∵是中點,∴,即,∴的方程為,即.故答案為.【點睛】本題考查垂徑定理.圓中弦問題,常常要用垂徑定理,如弦長(其中為圓心到弦所在直線的距離).13、【解析】

根據(jù)折疊后不變的垂直關(guān)系,結(jié)合線面垂直判定定理可得到為三棱錐的高,由此可根據(jù)三棱錐體積公式求得結(jié)果.【詳解】設(shè)點重合于點,如下圖所示:,,又平面,平面,即為三棱錐的高故答案為:【點睛】本題考查立體幾何折疊問題中的三棱錐體積的求解問題,處理折疊問題的關(guān)鍵是能夠明確折疊后的不變量,即不變的垂直關(guān)系和長度關(guān)系.14、【解析】

由,結(jié)合等比數(shù)列的定義可知數(shù)列是以為首項,為公比的等比數(shù)列,代入等比數(shù)列的求和公式即可求解.【詳解】因為,所以,又因為所以數(shù)列是以為首項,為公比的等比數(shù)列,所以由等比數(shù)列的求和公式得,解得【點睛】本題考查利用等比數(shù)列的定義求通項公式以及等比數(shù)列的求和公式,屬于簡單題.15、【解析】

先求出扇形的半徑,再求這個圓心角所夾的扇形的面積.【詳解】設(shè)扇形的半徑為R,由題得.所以扇形的面積為.故答案為:【點睛】本題主要考查扇形的半徑和面積的計算,意在考查學(xué)生對這些知識的理解掌握水平.16、16【解析】試題分析:由頻率分布直方圖知,收入在1511--2111元之間的概率為1.1114×511=1.2,所以在[1511,2111)(元)月收入段應(yīng)抽出81×1.2=16人??键c:?頻率分布直方圖的應(yīng)用;?分層抽樣。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)見解析;(3)存在,.【解析】

(1)利用可得,從而可得為等比數(shù)列,故可得其通項公式.用累加法可求的通項.(2)利用分組求和法可求,注意就的奇偶性分類討論.(3)根據(jù)的通項可得,故考慮的解可得滿足條件的的值.【詳解】(1)在數(shù)列中,當(dāng)時,.當(dāng)時,由得,因為,故,所以數(shù)列是以為首項,為公比的等比數(shù)列即.在數(shù)列中,當(dāng)時,有,由累加法得,,.當(dāng)時,也符合上式,所以.(2).當(dāng)為偶數(shù)時,=;當(dāng)為奇數(shù)時,=.(3)對任意的正整數(shù),有,假設(shè)存在正整數(shù),使得,則,令,解得,又為正整數(shù),所以滿足題意.【點睛】給定數(shù)列的遞推關(guān)系,求數(shù)列的通項時,我們常需要對遞推關(guān)系做變形構(gòu)建新數(shù)列(新數(shù)列的通項容易求得),常見的遞推關(guān)系、變形方法及求法如下:(1),用累加法;(2),可變形為,利用等比數(shù)列的通項公式可求的通項公式,兩種方法都可以得到的通項公式.(3)遞推關(guān)系式中有與前項和,可利用實現(xiàn)與之間的相互轉(zhuǎn)化.另外,數(shù)列不等式恒成立與有解問題,可轉(zhuǎn)化為數(shù)列的最值(或項的范圍)來處理.18、(1)證明見解析,(2)【解析】

(1)當(dāng)時,結(jié)合可求得;當(dāng)且時,利用可整理得,可證得數(shù)列為等比數(shù)列;根據(jù)等比數(shù)列通項公式可求得結(jié)果;(2)根據(jù)等比數(shù)列求和公式求得,代入可得;分別在為奇數(shù)和為偶數(shù)兩種情況下根據(jù)恒成立,采用分離變量的方法得到的范圍,綜合可得結(jié)果.【詳解】(1)當(dāng)時,,又當(dāng)且時,數(shù)列是以為首項,為公比的等比數(shù)列(2)由(1)知:當(dāng)為奇數(shù)時,,即:恒成立當(dāng)為偶數(shù)時,,即:綜上所述,若對恒成立,則【點睛】本題考查等比數(shù)列知識的綜合應(yīng)用,涉及到利用與關(guān)系證明數(shù)列為等比數(shù)列、等比數(shù)列通項公式和求和公式的應(yīng)用、恒成立問題的求解;本題解題關(guān)鍵是能夠進(jìn)行合理分類,分別在兩種情況下求解參數(shù)的范圍,最終取交集得到結(jié)果.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題得和,解方程即得圓的方程;(Ⅱ)取的中點,則,化簡得,即得m的值.【詳解】(Ⅰ)由,得圓的圓心為,圓關(guān)于直線對稱,①.圓的半徑為,②又圓心在第一象限,,,由①②解得,,故圓的方程為.(Ⅱ)取的中點,則,,,即,又,解得.【點睛】本題主要考查圓的方程的求法,考查直線和圓的位置關(guān)系和向量的運算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.20、(1)見解析;(2)【解析】

(1)證明,利用平面即可證得,問題得證.(2)過點作于點,過點作于點,連接.當(dāng)與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【詳解】(1)因為底面為菱形,所以為等邊三角形,又為中點所以,又所以因為平面,平面所以,又所以平面(2)過點作于點,過點作于點,連接當(dāng)與垂直時,與平面所成最大角.由(1)得,此時.所以就是與平面所成的角.在中,由題意可得:,又所以.設(shè),在中由等面積法得:解得:,所以因為平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個平面角因為為的中點,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值為【點睛】本題主要考查了線面垂直的證明,考查了轉(zhuǎn)化能力,還考查了線面角知識,考查了二面角的平面角作法,考查空間思維能力及解三角形,考查了方程思想及計算能力,屬于難題.21、(1);(2).【解析】

(1)求出的直線方程后可得的坐標(biāo),再求出的直線方程和的直線方程后可得的坐標(biāo),從而得到直線的直線方程.(2)直線的方程為,設(shè),求出的直線方程后可得的坐標(biāo),從而可用表示,換元后利用基本不等式可求的最小值.【詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論