版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省長治市屯留縣一中2023-2024學(xué)年高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽(yù)國內(nèi)外.據(jù)統(tǒng)計(jì),煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95442.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.3.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-24.函數(shù)y=sin2x的圖象可能是A. B.C. D.5.在中,,,,若,則實(shí)數(shù)()A. B. C. D.6.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若向量,,則與共線的向量可以是()A. B. C. D.8.為雙曲線的左焦點(diǎn),過點(diǎn)的直線與圓交于、兩點(diǎn),(在、之間)與雙曲線在第一象限的交點(diǎn)為,為坐標(biāo)原點(diǎn),若,且,則雙曲線的離心率為()A. B. C. D.9.函數(shù)的部分圖象大致為()A. B.C. D.10.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.11.一個(gè)正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.612.設(shè)全集,集合,.則集合等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是____14.設(shè)常數(shù),如果的二項(xiàng)展開式中項(xiàng)的系數(shù)為-80,那么______.15.的展開式中,常數(shù)項(xiàng)為______;系數(shù)最大的項(xiàng)是______.16.已知,分別是橢圓:()的左、右焦點(diǎn),過左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),且,,則橢圓的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍.18.(12分)已知,均為正項(xiàng)數(shù)列,其前項(xiàng)和分別為,,且,,,當(dāng),時(shí),,.(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)已知函數(shù),,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.20.(12分)某企業(yè)質(zhì)量檢驗(yàn)員為了檢測生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);(2)若從這個(gè)零件中尺寸位于之外的零件中隨機(jī)抽取個(gè),設(shè)表示尺寸在上的零件個(gè)數(shù),求的分布列及數(shù)學(xué)期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個(gè)零件尺寸的樣本頻率視為概率.現(xiàn)對生產(chǎn)線上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱個(gè).企業(yè)在交付買家之前需要決策是否對每箱的所有零件進(jìn)行檢驗(yàn),已知每個(gè)零件的檢驗(yàn)費(fèi)用為元.若檢驗(yàn),則將檢驗(yàn)出的二等品更換為一等品;若不檢驗(yàn),如果有二等品進(jìn)入買家手中,企業(yè)要向買家對每個(gè)二等品支付元的賠償費(fèi)用.現(xiàn)對一箱零件隨機(jī)抽檢了個(gè),結(jié)果有個(gè)二等品,以整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值作為決策依據(jù),該企業(yè)是否對該箱余下的所有零件進(jìn)行檢驗(yàn)?請說明理由.21.(12分)如圖1,在邊長為4的正方形中,是的中點(diǎn),是的中點(diǎn),現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.22.(10分)設(shè)函數(shù),,(Ⅰ)求曲線在點(diǎn)(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實(shí)直徑在內(nèi)的概率為0.8185.故選:C【點(diǎn)睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.2、D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.3、B【解析】
通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題.4、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).5、D【解析】
將、用、表示,再代入中計(jì)算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算,是一道中檔題.6、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.7、B【解析】
先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對應(yīng),縱坐標(biāo)與縱坐標(biāo)對應(yīng),切不可錯(cuò)位.8、D【解析】
過點(diǎn)作,可得出點(diǎn)為的中點(diǎn),由可求得的值,可計(jì)算出的值,進(jìn)而可得出,結(jié)合可知點(diǎn)為的中點(diǎn),可得出,利用勾股定理求得(為雙曲線的右焦點(diǎn)),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點(diǎn)作,設(shè)該雙曲線的右焦點(diǎn)為,連接.,.,,,為的中點(diǎn),,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點(diǎn)睛】本題考查雙曲線離心率的求解,解題時(shí)要充分分析圖形的形狀,考查推理能力與計(jì)算能力,屬于中等題.9、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!驹斀狻?,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B?!军c(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。10、D【解析】
,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.11、B【解析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個(gè)側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點(diǎn)睛】本題考查正三棱柱側(cè)面積的計(jì)算以及三視圖的認(rèn)識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.12、A【解析】
先算出集合,再與集合B求交集即可.【詳解】因?yàn)榛?所以,又因?yàn)?所以.故選:A.【點(diǎn)睛】本題考查集合間的基本運(yùn)算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)對數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.14、【解析】
利用二項(xiàng)式定理的通項(xiàng)公式即可得出.【詳解】的二項(xiàng)展開式的通項(xiàng)公式:,令,解得.∴,解得.故答案為:-2.【點(diǎn)睛】本小題主要考查根據(jù)二項(xiàng)式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.15、【解析】
求出二項(xiàng)展開式的通項(xiàng),令指數(shù)為零,求出參數(shù)的值,代入可得出展開式中的常數(shù)項(xiàng);求出項(xiàng)的系數(shù),利用作商法可求出系數(shù)最大的項(xiàng).【詳解】的展開式的通項(xiàng)為,令,得,所以,展開式中的常數(shù)項(xiàng)為;令,令,即,解得,,,因此,展開式中系數(shù)最大的項(xiàng)為.故答案為:;.【點(diǎn)睛】本題考查二項(xiàng)展開式中常數(shù)項(xiàng)的求解,同時(shí)也考查了系數(shù)最大項(xiàng)的求解,涉及展開式通項(xiàng)的應(yīng)用,考查分析問題和解決問題的能力,屬于中等題.16、【解析】
設(shè),則,,由知,,,作,垂足為C,則C為的中點(diǎn),在和中分別求出,進(jìn)而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因?yàn)?所以,,作,垂足為C,則C為的中點(diǎn),在中,因?yàn)?所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點(diǎn)睛】本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點(diǎn)三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)利用導(dǎo)數(shù)的幾何意義求解即可;(2)利用導(dǎo)數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點(diǎn)問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,由圖,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),,∴切線斜率,又切點(diǎn)∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當(dāng)時(shí),取極大值又時(shí),;時(shí),若沒有零點(diǎn),即的圖像與直線無公共點(diǎn),由圖像知的取值范圍是.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題,屬于中檔題.18、(1),(2)【解析】
(1),所,兩式相減,即可得到數(shù)列遞推關(guān)系求解通項(xiàng)公式,由,整理得,得到,即可求解通項(xiàng)公式;(2)由(1)可知,,即可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)?,所,兩式相減,整理得,當(dāng)時(shí),,解得,所以數(shù)列是首項(xiàng)和公比均為的等比數(shù)列,即,因?yàn)?,整理得,又因?yàn)椋?,所以,即,因?yàn)?,所以?shù)列是以首項(xiàng)和公差均為1的等差數(shù)列,所以;(2)由(1)可知,,,即.【點(diǎn)睛】此題考查求數(shù)列的通項(xiàng)公式,以及數(shù)列求和,關(guān)鍵在于對題中所給關(guān)系合理變形,發(fā)現(xiàn)其中的關(guān)系,裂項(xiàng)求和作為一類常用的求和方法,需要在平常的學(xué)習(xí)中多做積累常見的裂項(xiàng)方式.19、【解析】試題分析:先將問題“存在實(shí)數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實(shí)數(shù)使成立,等價(jià)于的最大值大于,因?yàn)椋煽挛鞑坏仁剑海裕?dāng)且僅當(dāng)時(shí)取“”,故常數(shù)的取值范圍是.考點(diǎn):柯西不等式即運(yùn)用和轉(zhuǎn)化與化歸的數(shù)學(xué)思想的運(yùn)用.20、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗(yàn),理由見詳解.【解析】
(1)計(jì)算的頻率,并且與進(jìn)行比較,判斷中位數(shù)落在的區(qū)間,然后根據(jù)頻率的計(jì)算方法,可得結(jié)果.(2)計(jì)算位于之外的零件中隨機(jī)抽取個(gè)的總數(shù),寫出所有可能取值,并計(jì)算相對應(yīng)的概率,列出分布列,計(jì)算期望,可得結(jié)果.(3)計(jì)算整箱的費(fèi)用,根據(jù)余下零件個(gè)數(shù)服從二項(xiàng)分布,可得余下零件個(gè)數(shù)的期望值,然后計(jì)算整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值,進(jìn)行比較,可得結(jié)果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數(shù)落在假設(shè)尺寸中位數(shù)為所以所以這個(gè)零件尺寸的中位數(shù)(2)尺寸在的個(gè)數(shù)為尺寸在的個(gè)數(shù)為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對余下的零件進(jìn)行檢驗(yàn)則整箱的檢驗(yàn)費(fèi)用為(元)余下二等品的個(gè)數(shù)期望值為如果不對余下的零件進(jìn)行檢驗(yàn),整箱檢驗(yàn)費(fèi)用與賠償費(fèi)用之和的期望值為(元)所以,所以可以不對余下的零件進(jìn)行檢驗(yàn).【點(diǎn)睛】本題考查頻率分布直方圖的應(yīng)用,掌握中位數(shù),平均數(shù),眾數(shù)的計(jì)算方法,中位數(shù)的理解應(yīng)該從中位數(shù)開始左右兩邊的頻率各為0.5,考驗(yàn)分析能力以及數(shù)據(jù)處理,屬中檔題.21、(1)證明見解析;(2).【解析】
(1)利用線面平行的定義證明即可(2)取的中點(diǎn),并分別連接,,然后,證明相應(yīng)的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,利用坐標(biāo)運(yùn)算進(jìn)行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點(diǎn),所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點(diǎn),并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個(gè)法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎(chǔ)題22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能校園監(jiān)理服務(wù)承諾書范本
- 能源開發(fā)項(xiàng)目協(xié)議
- 學(xué)校藝術(shù)團(tuán)隊(duì)化妝師招聘協(xié)議
- 電力工程臨時(shí)用工合同
- 辦公樓新風(fēng)系統(tǒng)安裝協(xié)議
- 生態(tài)農(nóng)業(yè)招投標(biāo)與合同綠色生產(chǎn)
- 通信基站電力安全檢查規(guī)定
- 通信行業(yè)會計(jì)專員財(cái)會聘用合同
- 企業(yè)內(nèi)訓(xùn)會議室租賃合同樣本
- 文化市場物業(yè)人員聘用合同
- 《 民航服務(wù)心理學(xué)》考試題及參考答案
- 利用相似三角形測高說課稿
- 高二期中考試家長會
- 圓錐曲線的光學(xué)性質(zhì)及其應(yīng)用(理科)課件
- 《水滸傳》導(dǎo)讀5武松課件
- 分光光度計(jì)使用
- 拖欠房租起訴書【5篇】
- 12種氣候類型表解
- 人教版選修5第一章第三節(jié)有機(jī)化合物的命名(俗稱、習(xí)慣、系統(tǒng)命名法)課件
- 2021學(xué)堂在線網(wǎng)課《生活英語讀寫》課后作業(yè)單元考核答案
- 三級公立醫(yī)院績效考核工作解讀(行業(yè)專家培訓(xùn)課件)
評論
0/150
提交評論