山東省泰安四中2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第1頁(yè)
山東省泰安四中2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第2頁(yè)
山東省泰安四中2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第3頁(yè)
山東省泰安四中2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第4頁(yè)
山東省泰安四中2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省泰安四中2023-2024學(xué)年高三壓軸卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書(shū)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入的值為2,則輸出的值為A. B. C. D.2.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.3.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有.則不等式的解集為().A. B.C.或 D.或4.函數(shù)在的圖象大致為()A. B.C. D.5.已知是邊長(zhǎng)為的正三角形,若,則A. B.C. D.6.設(shè),是空間兩條不同的直線,,是空間兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④7.若,則的虛部是()A. B. C. D.8.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.9.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實(shí)數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)10.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.11.已知橢圓:的左、右焦點(diǎn)分別為,,過(guò)的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.12.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿(mǎn)足,其中,,則的值為_(kāi)______________.14.《九章算術(shù)》卷5《商功》記載一個(gè)問(wèn)題“今有圓堡瑽,周四丈八尺,高一丈一尺.問(wèn)積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說(shuō)的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說(shuō):圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),則由此可推得圓周率的取值為_(kāi)_______.15.若雙曲線的離心率為,則雙曲線的漸近線方程為_(kāi)_____.16.已知數(shù)列的前項(xiàng)和為,,,,則滿(mǎn)足的正整數(shù)的所有取值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.18.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.19.(12分)新高考,取消文理科,實(shí)行“”,成績(jī)由語(yǔ)文、數(shù)學(xué)、外語(yǔ)統(tǒng)一高考成績(jī)和自主選考的3門(mén)普通高中學(xué)業(yè)水平考試等級(jí)性考試科目成績(jī)構(gòu)成.為了解各年齡層對(duì)新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在稱(chēng)為中青年,年齡在稱(chēng)為中老年),并把調(diào)查結(jié)果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計(jì)中青年和中老年對(duì)新高考了解的概率;(2)請(qǐng)根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對(duì)新高考的了解與年齡(中青年、中老年)有關(guān)?了解新高考不了解新高考總計(jì)中青年中老年總計(jì)附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調(diào)查者中隨機(jī)選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.20.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,.(1)求拋物線的方程;(2)過(guò)點(diǎn)的直線與拋物線交于、兩點(diǎn),過(guò)點(diǎn)且與直線垂直的直線與準(zhǔn)線交于點(diǎn),設(shè)的中點(diǎn)為,若、、四點(diǎn)共圓,求直線的方程.21.(12分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.22.(10分)已知橢圓,點(diǎn),點(diǎn)滿(mǎn)足(其中為坐標(biāo)原點(diǎn)),點(diǎn)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點(diǎn)為,若不經(jīng)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).且與圓相切.的周長(zhǎng)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由題意,模擬程序的運(yùn)行,依次寫(xiě)出每次循環(huán)得到的,的值,當(dāng)時(shí),不滿(mǎn)足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運(yùn)行過(guò)程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫(xiě)出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.2、A【解析】

將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)?,?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大??;若真數(shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.3、D【解析】

先通過(guò)得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時(shí)為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開(kāi)口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識(shí)點(diǎn),屬于較難題目.4、C【解析】

先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項(xiàng);當(dāng)時(shí),,所以排除A選項(xiàng);當(dāng)時(shí),,排除D選項(xiàng);綜上可知,C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.5、A【解析】

由可得,因?yàn)槭沁呴L(zhǎng)為的正三角形,所以,故選A.6、C【解析】

根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯(cuò)②:因?yàn)?,,所以或,因?yàn)?,所以,故②?duì)③:或,故③錯(cuò)④:如圖因?yàn)椋?,在?nèi)過(guò)點(diǎn)作直線的垂線,則直線,又因?yàn)椋O(shè)經(jīng)過(guò)和相交的平面與交于直線,則又,所以因?yàn)?,,所以,所以,故④?duì).故選:C【點(diǎn)睛】考查線面平行或垂直的判斷,基礎(chǔ)題.7、D【解析】

通過(guò)復(fù)數(shù)的乘除運(yùn)算法則化簡(jiǎn)求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.8、B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.9、C【解析】

求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡(jiǎn)圖,得到a滿(mǎn)足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點(diǎn)睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而研究函數(shù)的最值,屬于??碱}型.10、C【解析】

根據(jù)準(zhǔn)線的方程寫(xiě)出拋物線的標(biāo)準(zhǔn)方程,再對(duì)照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.11、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.12、B【解析】

復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的分類(lèi),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點(diǎn)睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.14、3【解析】

根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),可得,進(jìn)而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點(diǎn)睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.15、【解析】

利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16、20,21【解析】

由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿(mǎn)足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】

(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE因?yàn)樗倪呅蜛BCD為平行四邊形∴O為AC中點(diǎn),又E為PC中點(diǎn),故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD

;(2)∵△PCD為正三角形,E為PC中點(diǎn)所以PC⊥DE因?yàn)槠矫鍼CD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,線面平行一般轉(zhuǎn)化為線線平行來(lái)證明,直線與直線垂直通常利用線面垂直來(lái)進(jìn)行證明,側(cè)重考查邏輯推理的核心素養(yǎng).18、(1)證明見(jiàn)解析(2)【解析】

(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個(gè)法向量,∴,∴平面與平面所成角的正弦值為.【點(diǎn)睛】本題第一問(wèn)考查線線垂直,先證線面垂直時(shí)解題關(guān)鍵,第二問(wèn)考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.19、(1);(2)見(jiàn)解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián);(3)分布列見(jiàn)解析,.【解析】

(1)分別求出中青年、中老年對(duì)高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測(cè)值,對(duì)照表格,即可得出結(jié)論;(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機(jī)變量分布列,根據(jù)期望公式即可求解.【詳解】(1)由題中數(shù)據(jù)可知,中青年對(duì)新高考了解的概率,中老年對(duì)新高考了解的概率.(2)列聯(lián)表如圖所示了解新高考不了解新高考總計(jì)中青年22830老年81220總計(jì)302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián).(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數(shù)可能取值為0,1,2,則;;.所以的分布列為012.【點(diǎn)睛】本題考查概率、獨(dú)立性檢驗(yàn)及隨機(jī)變量分布列和期望,考查計(jì)算求解能力,屬于基礎(chǔ)題.20、(1)(2)【解析】

(1)由拋物線的定義可得,即可求出,從而得到拋物線方程;(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論