浙江省嘉興地區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)適應(yīng)性模擬試題及答案解析_第1頁
浙江省嘉興地區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)適應(yīng)性模擬試題及答案解析_第2頁
浙江省嘉興地區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)適應(yīng)性模擬試題及答案解析_第3頁
浙江省嘉興地區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)適應(yīng)性模擬試題及答案解析_第4頁
浙江省嘉興地區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)適應(yīng)性模擬試題及答案解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省嘉興地區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)適應(yīng)性模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一個(gè)不透明的盒子里有n個(gè)除顏色外其他完全相同的小球,其中有9個(gè)黃球,每次摸球前先將盒子里的球搖勻,任意摸出一個(gè)球記下顏色后再放回盒子,通過大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在30%,那么估計(jì)盒子中小球的個(gè)數(shù)n為()A.20 B.24 C.28 D.302.如圖1,點(diǎn)P從△ABC的頂點(diǎn)A出發(fā),沿A﹣B﹣C勻速運(yùn)動(dòng),到點(diǎn)C停止運(yùn)動(dòng).點(diǎn)P運(yùn)動(dòng)時(shí),線段AP的長(zhǎng)度y與運(yùn)動(dòng)時(shí)間x的函數(shù)關(guān)系如圖2所示,其中D為曲線部分的最低點(diǎn),則△ABC的面積是()A.10 B.12 C.20 D.243.下列二次根式中,與是同類二次根式的是()A. B. C. D.4.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點(diǎn),則CM的長(zhǎng)為()A. B.2 C. D.35.一元二次方程x2+kx﹣3=0的一個(gè)根是x=1,則另一個(gè)根是()A.3 B.﹣1 C.﹣3 D.﹣26.關(guān)于x的一元二次方程x2-4x+k=0有兩個(gè)相等的實(shí)數(shù)根,則k的值是()A.2 B.-2 C.4 D.-47.如圖,在平面直角坐標(biāo)系中,矩形ABOC的兩邊在坐標(biāo)軸上,OB=1,點(diǎn)A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個(gè)單位長(zhǎng)度到A1B1O1C1的位置,此時(shí)點(diǎn)A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點(diǎn)P,則點(diǎn)P的縱坐標(biāo)是()A. B. C. D.8.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.59.如圖,?ABCD對(duì)角線AC與BD交于點(diǎn)O,且AD=3,AB=5,在AB延長(zhǎng)線上取一點(diǎn)E,使BE=AB,連接OE交BC于F,則BF的長(zhǎng)為()A. B. C. D.110.“可燃冰”的開發(fā)成功,拉開了我國(guó)開發(fā)新能源的大門,目前發(fā)現(xiàn)我國(guó)南海“可燃冰”儲(chǔ)存量達(dá)到800億噸,將800億用科學(xué)記數(shù)法可表示為()A.0.8×1011 B.8×1010 C.80×109 D.800×10811.如圖是某幾何體的三視圖,下列判斷正確的是()A.幾何體是圓柱體,高為2 B.幾何體是圓錐體,高為2C.幾何體是圓柱體,半徑為2 D.幾何體是圓錐體,直徑為212.春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學(xué)校高度重視的一項(xiàng)工作,為此,某校對(duì)學(xué)生宿舍采取噴灑藥物進(jìn)行消毒.在對(duì)某宿舍進(jìn)行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進(jìn)行通風(fēng),室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時(shí)間之間的函數(shù)關(guān)系,在打開門窗通風(fēng)前分別滿足兩個(gè)一次函數(shù),在通風(fēng)后又成反比例,如圖所示.下面四個(gè)選項(xiàng)中錯(cuò)誤的是()A.經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達(dá)到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時(shí)間達(dá)到了C.當(dāng)室內(nèi)空氣中的含藥量不低于且持續(xù)時(shí)間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當(dāng)室內(nèi)空氣中的含藥量低于時(shí),對(duì)人體才是安全的,所以從室內(nèi)空氣中的含藥量達(dá)到開始,需經(jīng)過后,學(xué)生才能進(jìn)入室內(nèi)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+4x與x軸交于點(diǎn)A,點(diǎn)M是x軸上方拋物線上一點(diǎn),過點(diǎn)M作MP⊥x軸于點(diǎn)P,以MP為對(duì)角線作矩形MNPQ,連結(jié)NQ,則對(duì)角線NQ的最大值為_________.14.某廣場(chǎng)要做一個(gè)由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個(gè)頂點(diǎn))有n(n>1)盆花,設(shè)這個(gè)花壇邊上的花盆的總數(shù)為S,請(qǐng)觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關(guān)系是________________________________.15.如圖,已知O為△ABC內(nèi)一點(diǎn),點(diǎn)D、E分別在邊AB和AC上,且,DE∥BC,設(shè)、,那么______(用、表示).16.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為_____.17.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個(gè)數(shù)中的其中某一個(gè),若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,得出他們”心有靈犀”的概率為_____.18.已知一次函數(shù)的圖象與直線y=x+3平行,并且經(jīng)過點(diǎn)(﹣2,﹣4),則這個(gè)一次函數(shù)的解析式為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).求直線AB的解析式和點(diǎn)B的坐標(biāo);求△ABP的面積(用含n的代數(shù)式表示);當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).20.(6分)如圖1,點(diǎn)和矩形的邊都在直線上,以點(diǎn)為圓心,以24為半徑作半圓,分別交直線于兩點(diǎn).已知:,,矩形自右向左在直線上平移,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),矩形停止運(yùn)動(dòng).在平移過程中,設(shè)矩形對(duì)角線與半圓的交點(diǎn)為(點(diǎn)為半圓上遠(yuǎn)離點(diǎn)的交點(diǎn)).如圖2,若與半圓相切,求的值;如圖3,當(dāng)與半圓有兩個(gè)交點(diǎn)時(shí),求線段的取值范圍;若線段的長(zhǎng)為20,直接寫出此時(shí)的值.21.(6分)如圖,在菱形ABCD中,E、F分別為AD和CD上的點(diǎn),且AE=CF,連接AF、CE交于點(diǎn)G,求證:點(diǎn)G在BD上.22.(8分)解分式方程:x+1x-1-23.(8分)如圖,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知點(diǎn)A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點(diǎn)D(m,n)是拋物線在第二象限的部分上的一動(dòng)點(diǎn),四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系式;若點(diǎn)E為拋物線上任意一點(diǎn),點(diǎn)F為x軸上任意一點(diǎn),當(dāng)以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)求出滿足條件的所有點(diǎn)E的坐標(biāo).24.(10分)某中學(xué)七、八年級(jí)各選派10名選手參加知識(shí)競(jìng)賽,計(jì)分采用10分制,選手得分均為整數(shù),成績(jī)達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀,這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)選手成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如下,其中七年級(jí)代表隊(duì)得6分、10分的選手人數(shù)分別為a、b.隊(duì)別平均分中位數(shù)方差合格率優(yōu)秀率七年級(jí)6.7m3.4190%n八年級(jí)7.17.51.6980%10%(1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí);所以七年級(jí)隊(duì)成績(jī)比八年級(jí)隊(duì)好,但也有人說八年級(jí)隊(duì)成績(jī)比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.25.(10分)為了解某校九年級(jí)男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)跟進(jìn)相關(guān)信息,解答下列問題:(1)本次抽測(cè)的男生人數(shù)為,圖①中m的值為;(2)求本次抽測(cè)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),根據(jù)樣本數(shù)據(jù),估計(jì)該校350名九年級(jí)男生中有多少人體能達(dá)標(biāo).26.(12分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,點(diǎn)P為邊AB上一動(dòng)點(diǎn),以P為圓心,BP為半徑的圓交邊BC于點(diǎn)Q.(1)求AB的長(zhǎng);(2)當(dāng)BQ的長(zhǎng)為時(shí),請(qǐng)通過計(jì)算說明圓P與直線DC的位置關(guān)系.27.(12分)如圖①,一次函數(shù)y=x﹣2的圖象交x軸于點(diǎn)A,交y軸于點(diǎn)B,二次函數(shù)y=x2+bx+c的圖象經(jīng)過A、B兩點(diǎn),與x軸交于另一點(diǎn)C.(1)求二次函數(shù)的關(guān)系式及點(diǎn)C的坐標(biāo);(2)如圖②,若點(diǎn)P是直線AB上方的拋物線上一點(diǎn),過點(diǎn)P作PD∥x軸交AB于點(diǎn)D,PE∥y軸交AB于點(diǎn)E,求PD+PE的最大值;(3)如圖③,若點(diǎn)M在拋物線的對(duì)稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點(diǎn)M的坐標(biāo).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

試題解析:根據(jù)題意得=30%,解得n=30,所以這個(gè)不透明的盒子里大約有30個(gè)除顏色外其他完全相同的小球.故選D.考點(diǎn):利用頻率估計(jì)概率.2、B【解析】過點(diǎn)A作AM⊥BC于點(diǎn)M,由題意可知當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)M時(shí),AP最小,此時(shí)長(zhǎng)為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長(zhǎng),以及點(diǎn)P運(yùn)動(dòng)到與BC垂直時(shí)最短是解題的關(guān)鍵.3、C【解析】

根據(jù)二次根式的性質(zhì)把各個(gè)二次根式化簡(jiǎn),根據(jù)同類二次根式的定義判斷即可.【詳解】A.|a|與不是同類二次根式;B.與不是同類二次根式;C.2與是同類二次根式;D.與不是同類二次根式.故選C.【點(diǎn)睛】本題考查了同類二次根式的定義,一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式.4、C【解析】

延長(zhǎng)BC到E使BE=AD,利用中點(diǎn)的性質(zhì)得到CM=DE=AB,再利用勾股定理進(jìn)行計(jì)算即可解答.【詳解】解:延長(zhǎng)BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點(diǎn),∵M(jìn)是BD的中點(diǎn),∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點(diǎn)睛】此題考查平行四邊形的性質(zhì),勾股定理,解題關(guān)鍵在于作輔助線.5、C【解析】試題分析:根據(jù)根與系數(shù)的關(guān)系可得出兩根的積,即可求得方程的另一根.設(shè)m、n是方程x2+kx﹣3=0的兩個(gè)實(shí)數(shù)根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點(diǎn)】根與系數(shù)的關(guān)系;一元二次方程的解.6、C【解析】

對(duì)于一元二次方程a+bx+c=0,當(dāng)Δ=-4ac=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根.即16-4k=0,解得:k=4.考點(diǎn):一元二次方程根的判別式7、C【解析】分析:先求出A點(diǎn)坐標(biāo),再根據(jù)圖形平移的性質(zhì)得出A1點(diǎn)的坐標(biāo),故可得出反比例函數(shù)的解析式,把O1點(diǎn)的橫坐標(biāo)代入即可得出結(jié)論.詳解:∵OB=1,AB⊥OB,點(diǎn)A在函數(shù)(x<0)的圖象上,∴當(dāng)x=?1時(shí),y=2,∴A(?1,2).∵此矩形向右平移3個(gè)單位長(zhǎng)度到的位置,∴B1(2,0),∴A1(2,2).∵點(diǎn)A1在函數(shù)(x>0)的圖象上,∴k=4,∴反比例函數(shù)的解析式為,O1(3,0),∵C1O1⊥x軸,∴當(dāng)x=3時(shí),∴P故選C.點(diǎn)睛:考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,坐標(biāo)與圖形變化-平移,解題的關(guān)鍵是運(yùn)用雙曲線方程求出點(diǎn)A的坐標(biāo),利用平移的性質(zhì)求出點(diǎn)A1的坐標(biāo).8、D【解析】【分析】先對(duì)括號(hào)內(nèi)的進(jìn)行通分,進(jìn)行分式的加減法運(yùn)算,然后再進(jìn)行分式的乘除法運(yùn)算,最后把a(bǔ)-b=5整體代入進(jìn)行求解即可.【詳解】(﹣2)?===a-b,當(dāng)a-b=5時(shí),原式=5,故選D.9、A【解析】

首先作輔助線:取AB的中點(diǎn)M,連接OM,由平行四邊形的性質(zhì)與三角形中位線的性質(zhì),即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對(duì)應(yīng)邊成比例即可求得BF的值.【詳解】取AB的中點(diǎn)M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【點(diǎn)睛】此題考查了平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì)等知識(shí).解此題的關(guān)鍵是準(zhǔn)確作出輔助線,合理應(yīng)用數(shù)形結(jié)合思想解題.10、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:將800億用科學(xué)記數(shù)法表示為:8×1.

故選:B.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.11、A【解析】試題解析:根據(jù)主視圖和左視圖為矩形是柱體,根據(jù)俯視圖是圓可判斷出這個(gè)幾何體應(yīng)該是圓柱,再根據(jù)左視圖的高度得出圓柱體的高為2;故選A.考點(diǎn):由三視圖判斷幾何體.12、C【解析】

利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時(shí),y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時(shí)間達(dá)到了11min,正確,不符合題意;C、y=5時(shí),x=2.5或24,24-2.5=21.5<35,故本選項(xiàng)錯(cuò)誤,符合題意;D、正確.不符合題意,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用等知識(shí),解題的關(guān)鍵是讀懂圖象信息,屬于中考??碱}型.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4【解析】∵四邊形MNPQ是矩形,∴NQ=MP,∴當(dāng)MP最大時(shí),NQ就最大.∵點(diǎn)M是拋物線在軸上方部分圖象上的一點(diǎn),且MP⊥軸于點(diǎn)P,∴當(dāng)點(diǎn)M是拋物線的頂點(diǎn)時(shí),MP的值最大.∵,∴拋物線的頂點(diǎn)坐標(biāo)為(2,4),∴當(dāng)點(diǎn)M的坐標(biāo)為(2,4)時(shí),MP最大=4,∴對(duì)角線NQ的最大值為4.14、S=1n-1【解析】觀察可得,n=2時(shí),S=1;

n=3時(shí),S=1+(3-2)×1=12;

n=4時(shí),S=1+(4-2)×1=18;

…;

所以,S與n的關(guān)系是:S=1+(n-2)×1=1n-1.

故答案為S=1n-1.【點(diǎn)睛】本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.15、【解析】

根據(jù),DE∥BC,結(jié)合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是平面向量,解題的關(guān)鍵是熟練的掌握平面向量.16、﹣2【解析】

要求函數(shù)的解析式只要求出B點(diǎn)的坐標(biāo)就可以,過點(diǎn)A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據(jù)條件得到△ACO∽△ODB,得到:=1,然后用待定系數(shù)法即可.【詳解】過點(diǎn)A,B作AC⊥x軸,BD⊥x軸,分別于C,D.設(shè)點(diǎn)A的坐標(biāo)是(m,n),則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因?yàn)辄c(diǎn)A在反比例函數(shù)y=的圖象上,∴mn=1.∵點(diǎn)B在反比例函數(shù)y=的圖象上,∴B點(diǎn)的坐標(biāo)是(-1n,1m).∴k=-1n?1m=-4mn=-2.故答案為-2.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,相似三角形的判定和性質(zhì),利用相似三角形的性質(zhì)求得點(diǎn)B的坐標(biāo)(用含n的式子表示)是解題的關(guān)鍵.17、【解析】

利用P(A)=,進(jìn)行計(jì)算概率.【詳解】從0,1,2,3四個(gè)數(shù)中任取兩個(gè)則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點(diǎn)睛】本題考查了概率的簡(jiǎn)單計(jì)算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.18、y=x﹣1【解析】分析:根據(jù)互相平行的兩直線解析式的k值相等設(shè)出一次函數(shù)的解析式,再把點(diǎn)(﹣2,﹣4)的坐標(biāo)代入解析式求解即可.詳解:∵一次函數(shù)的圖象與直線y=x+1平行,∴設(shè)一次函數(shù)的解析式為y=x+b.∵一次函數(shù)經(jīng)過點(diǎn)(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以這個(gè)一次函數(shù)的表達(dá)式是:y=x﹣1.故答案為y=x﹣1.點(diǎn)睛:本題考查了兩直線平行的問題,熟記平行直線的解析式的k值相等設(shè)出一次函數(shù)解析式是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)AB的解析式是y=-x+1.點(diǎn)B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標(biāo)代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標(biāo);(2)過點(diǎn)A作AM⊥PD,垂足為M,求得AM的長(zhǎng),即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點(diǎn)求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當(dāng)y=0時(shí),0=-x+1,解得x=3,∴點(diǎn)B(3,0).(2)過點(diǎn)A作AM⊥PD,垂足為M,則有AM=1,∵x=1時(shí),y=-x+1=,P在點(diǎn)D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點(diǎn)B(3,0),可知點(diǎn)B到直線x=1的距離為2,即△BDP的邊PD上的高長(zhǎng)為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,∴點(diǎn)P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點(diǎn)C作CN⊥直線x=1于點(diǎn)N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過點(diǎn)C作CF⊥x軸于點(diǎn)F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點(diǎn)C的坐標(biāo)是(3,4)或(5,2)或(3,2).考點(diǎn):一次函數(shù)綜合題.20、(1);(2);(3)或【解析】

(1)如圖2,連接OP,則DF與半圓相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;(2)利用,求出,則;DF與半圓相切,由(1)知:PD=CD=18,即可求解;(3)設(shè)PG=GH=m,則:,求出,利用,即可求解.【詳解】(1)如圖,連接∵與半圓相切,∴,∴,在矩形中,,∵,根據(jù)勾股定理,得在和中,∴∴(2)如圖,當(dāng)點(diǎn)與點(diǎn)重合時(shí),過點(diǎn)作與點(diǎn),則∵且,由(1)知:∴,∴,∴當(dāng)與半圓相切時(shí),由(1)知:,∴(3)設(shè)半圓與矩形對(duì)角線交于點(diǎn)P、H,過點(diǎn)O作OG⊥DF,則PG=GH,,則,設(shè):PG=GH=m,則:,,整理得:25m2-640m+1216=0,解得:,.【點(diǎn)睛】本題考查的是圓的基本知識(shí)綜合運(yùn)用,涉及到直線與圓的位置關(guān)系、解直角三角形等知識(shí),其中(3),正確畫圖,作等腰三角形OPH的高OG,是本題的關(guān)鍵.21、見解析【解析】

先連接AC,根據(jù)菱形性質(zhì)證明△EAC≌△FCA,然后結(jié)合中垂線的性質(zhì)即可證明點(diǎn)G在BD上.【詳解】證明:如圖,連接AC.∵四邊形ABCD是菱形,∴DA=DC,BD與AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA,∴△EAC≌△FCA,∴∠ECA=∠FAC,∴GA=GC,∴點(diǎn)G在AC的中垂線上,∴點(diǎn)G在BD上.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)菱形性質(zhì)的理解,掌握菱形性質(zhì)和三角形全等證明方法是解題的關(guān)鍵.22、方程無解【解析】

找出分式方程的最簡(jiǎn)公分母,去分母后轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,再代入最簡(jiǎn)公分母進(jìn)行檢驗(yàn)即可.【詳解】解:方程的兩邊同乘(x+1)(x?1),得:x+12x2x2∴此方程無解【點(diǎn)睛】本題主要考查了解分式方程,解分式方程的步驟:①去分母;②解整式方程;③驗(yàn)根.23、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解析】

(1)把點(diǎn)A的坐標(biāo)代入拋物線的解析式,就可求得拋物線的解析式,根據(jù)A,C兩點(diǎn)的坐標(biāo),可求得直線AC的函數(shù)解析式;(1)先過點(diǎn)D作DH⊥x軸于點(diǎn)H,運(yùn)用割補(bǔ)法即可得到:四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,據(jù)此列式計(jì)算化簡(jiǎn)就可求得S關(guān)于m的函數(shù)關(guān)系;(3)由于AC確定,可分AC是平行四邊形的邊和對(duì)角線兩種情況討論,得到點(diǎn)E與點(diǎn)C的縱坐標(biāo)之間的關(guān)系,然后代入拋物線的解析式,就可得到滿足條件的所有點(diǎn)E的坐標(biāo).【詳解】(1)∵A(﹣4,0)在二次函數(shù)y=ax1﹣x+1(a≠0)的圖象上,∴0=16a+6+1,解得a=﹣,∴拋物線的函數(shù)解析式為y=﹣x1﹣x+1;∴點(diǎn)C的坐標(biāo)為(0,1),設(shè)直線AC的解析式為y=kx+b,則,解得,∴直線AC的函數(shù)解析式為:;(1)∵點(diǎn)D(m,n)是拋物線在第二象限的部分上的一動(dòng)點(diǎn),∴D(m,﹣m1﹣m+1),過點(diǎn)D作DH⊥x軸于點(diǎn)H,則DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,∵四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),化簡(jiǎn),得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC為平行四邊形的一邊,則C、E到AF的距離相等,∴|yE|=|yC|=1,∴yE=±1.當(dāng)yE=1時(shí),解方程﹣x1﹣x+1=1得,x1=0,x1=﹣3,∴點(diǎn)E的坐標(biāo)為(﹣3,1);當(dāng)yE=﹣1時(shí),解方程﹣x1﹣x+1=﹣1得,x1=,x1=,∴點(diǎn)E的坐標(biāo)為(,﹣1)或(,﹣1);②若AC為平行四邊形的一條對(duì)角線,則CE∥AF,∴yE=yC=1,∴點(diǎn)E的坐標(biāo)為(﹣3,1).綜上所述,滿足條件的點(diǎn)E的坐標(biāo)為(﹣3,1)、(,﹣1)、(,﹣1).24、(1)a=5,b=1;(2)6;20%;(3)八年級(jí)平均分高于七年級(jí),方差小于七年級(jí).【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)求出a與b的值即可;(2)根據(jù)(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由即可.試題解析:(1)根據(jù)題意得:解得a=5,b=1;(2)七年級(jí)成績(jī)?yōu)?,6,6,6,6,6,7,8,9,10,中位數(shù)為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級(jí)平均分高于七年級(jí),方差小于七年級(jí),成績(jī)比較穩(wěn)定,故八年級(jí)隊(duì)比七年級(jí)隊(duì)成績(jī)好.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.統(tǒng)計(jì)表;3.加權(quán)平均數(shù);4.中位數(shù);5.方差.25、(1)50、1;(2)平均數(shù)為5.16次,眾數(shù)為5次,中位數(shù)為5次;(3)估計(jì)該校350名九年級(jí)男生中有2人體能達(dá)標(biāo).【解析】分析:(Ⅰ)根據(jù)4次的人數(shù)及其百分比可得總?cè)藬?shù),用6次的人數(shù)除以總?cè)藬?shù)求得m即可;(Ⅱ)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義求解可得;(Ⅲ)總?cè)藬?shù)乘以樣本中5、6、7次人數(shù)之和占被調(diào)查人數(shù)的比例可得.詳解:(Ⅰ)本次抽測(cè)的男生人數(shù)為10÷20%=50,m%=×100%=1%,所以m=1.故答案為50、1;(Ⅱ)平均數(shù)為=5.16次,眾數(shù)為5次,中位數(shù)為=5次;(Ⅲ)×350=2.答:估計(jì)該校350名九年級(jí)男生中有2人體能達(dá)標(biāo).點(diǎn)睛:本題考查了條形統(tǒng)計(jì)圖,讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).26、(1)AB長(zhǎng)為5;(2)圓P與直線DC相切,理由詳見解析.【解析】

(1)過A作AE⊥BC于E,根據(jù)矩形的性質(zhì)得到CE=AD=1,AE=CD=3,根據(jù)勾股定理即可得到結(jié)論;

(2)過P作PF⊥BQ于F,根據(jù)相似三角形的性質(zhì)得到PB=,得到PA=AB-PB=,過P作PG⊥CD于G交AE于M,根據(jù)相似三角形的性質(zhì)得到PM=,根據(jù)切線的判定定理即可得到結(jié)論.【詳解】(1)過A作AE⊥BC于E,

則四邊形AECD是矩形,

∴CE=AD=1,AE=CD=3,

∵AB=BC,

∴BE=AB-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論