版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省鄭州市外國語中學(xué)中考數(shù)學(xué)仿真試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.2.如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°3.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是()A.4的算術(shù)平方根 B.4的立方根 C.8的算術(shù)平方根 D.8的立方根4.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設(shè)OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>5.已知x=1是方程x2+mx+n=0的一個根,則代數(shù)式m2+2mn+n2的值為()A.–1B.2C.1D.–26.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=27.下列運算正確的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a(chǎn)3+a2=2a58.如圖,點P是以O(shè)為圓心,AB為直徑的半圓上的動點,AB=2,設(shè)弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是A.B.C.D.9.根據(jù)中國鐵路總公司3月13日披露,2018年鐵路春運自2月1日起至3月12日止,為期40天全國鐵路累計發(fā)送旅客3.82億人次.3.82億用科學(xué)記數(shù)法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×101010.某大學(xué)生利用課余時間在網(wǎng)上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數(shù)關(guān)系式為y=–4x+440,要獲得最大利潤,該商品的售價應(yīng)定為A.60元B.70元C.80元D.90元11.已知正比例函數(shù)的圖象經(jīng)過點,則此正比例函數(shù)的關(guān)系式為().A. B. C. D.12.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知關(guān)于x的二次函數(shù)y=x2-2x-2,當(dāng)a≤x≤a+2時,函數(shù)有最大值1,則a的值為________.14.方程x-1=的解為:______.15.甲、乙兩車分別從A、B兩地同時出發(fā),相向行駛,已知甲車的速度大于乙車的速度,甲車到達(dá)B地后馬上以另一速度原路返回A地(掉頭的時間忽略不計),乙車到達(dá)A地以后即停在地等待甲車.如圖所示為甲乙兩車間的距離y(千米)與甲車的行駛時間t(小時)之間的函數(shù)圖象,則當(dāng)乙車到達(dá)A地的時候,甲車與A地的距離為_____千米.16.因式分解:a3﹣2a2b+ab2=_____.17.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.18.已知一粒米的質(zhì)量是1.111121千克,這個數(shù)字用科學(xué)記數(shù)法表示為__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)對于平面直角坐標(biāo)系中的點,將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點,當(dāng)時,畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)20.(6分)一個不透明的口袋中有四個完全相同的小球,把它們分別標(biāo)號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:兩次取出的小球標(biāo)號相同;兩次取出的小球標(biāo)號的和等于4.21.(6分)從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.22.(8分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當(dāng)AE為何值時,△AEF的面積最大?23.(8分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.24.(10分)隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五?一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:2017年“五?一”期間,該市周邊景點共接待游客萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是,并補全條形統(tǒng)計圖.根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五?一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?甲、乙兩個旅行團(tuán)在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.25.(10分)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個學(xué)生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計圖:根據(jù)統(tǒng)計圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;(2)補全條形統(tǒng)計圖;(3)若該校共有2000名學(xué)生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學(xué)生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干纾荒苓x兩名學(xué)生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.26.(12分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結(jié)AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應(yīng)用)在探究的條件下,設(shè)PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.27.(12分)列方程或方程組解應(yīng)用題:為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)軸對稱圖形和中心對稱圖形的概念,對各個選項進(jìn)行判斷,即可得到答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關(guān)鍵是熟練掌握概念進(jìn)行分析判斷.2、B【解析】
由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE=150°,AB=AE,由等腰三角形的性質(zhì)和內(nèi)角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質(zhì)即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【點睛】本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì);熟練掌握正方形和等邊三角形的性質(zhì),并能進(jìn)行推理計算是解決問題的關(guān)鍵.3、C【解析】
解:由題意可知4的算術(shù)平方根是2,4的立方根是<2,8的算術(shù)平方根是,2<<3,8的立方根是2,
故根據(jù)數(shù)軸可知,
故選C4、C【解析】如下圖,設(shè)⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.5、C【解析】
把x=1代入x2+mx+n=0,可得m+n=-1,然后根據(jù)完全平方公式把m2+2mn+n2變形后代入計算即可.【詳解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故選C.【點睛】本題考查了方程的根和整體代入法求代數(shù)式的值,能使方程兩邊相等的未知數(shù)的值叫做方程的根.6、A【解析】
根據(jù)二次根式的性質(zhì)對A進(jìn)行判斷;根據(jù)二次根式的加減法對B進(jìn)行判斷;根據(jù)二次根式的除法法則對C進(jìn)行判斷;根據(jù)二次根式的乘法法則對D進(jìn)行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進(jìn)行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.7、B【解析】
根據(jù)去括號法則,積的乘方的性質(zhì),完全平方公式,合并同類項法則,對各選項分析判斷后利用排除法求解.【詳解】解:A、因為﹣(a﹣1)=﹣a+1,故本選項錯誤;B、(﹣2a3)2=4a6,正確;C、因為(a﹣b)2=a2﹣2ab+b2,故本選項錯誤;D、因為a3與a2不是同類項,而且是加法,不能運算,故本選項錯誤.故選B.【點睛】本題考查了合并同類項,積的乘方,完全平方公式,理清指數(shù)的變化是解題的關(guān)鍵.8、A?!窘馕觥咳鐖D,∵根據(jù)三角形面積公式,當(dāng)一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當(dāng)PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據(jù)勾股定理,得弦AP=x=?!喈?dāng)x=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當(dāng)AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應(yīng)在y=的一半上方,從而可排除C選項。故選A。9、B【解析】
根據(jù)題目中的數(shù)據(jù)可以用科學(xué)記數(shù)法表示出來,本題得以解決.【詳解】解:3.82億=3.82×108,故選B.【點睛】本題考查科學(xué)記數(shù)法-表示較大的數(shù),解答本題的關(guān)鍵是明確科學(xué)記數(shù)法的表示方法.10、C【解析】設(shè)銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當(dāng)x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.11、A【解析】
根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標(biāo)代入解析式,利用方程解決問題.12、C【解析】
根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1或1【解析】
利用二次函數(shù)圖象上點的坐標(biāo)特征找出當(dāng)y=1時x的值,結(jié)合當(dāng)a≤x≤a+2時函數(shù)有最大值1,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.【詳解】解:當(dāng)y=1時,x2-2x-2=1,
解得:x1=-1,x2=3,
∵當(dāng)a≤x≤a+2時,函數(shù)有最大值1,
∴a=-1或a+2=3,即a=1.
故答案為-1或1.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點的坐標(biāo)特征找出當(dāng)y=1時x的值是解題的關(guān)鍵.14、【解析】
兩邊平方解答即可.【詳解】原方程可化為:(x-1)2=1-x,
解得:x1=0,x2=1,
經(jīng)檢驗,x=0不是原方程的解,x=1是原方程的解
故答案為.【點睛】此題考查無理方程的解法,關(guān)鍵是把兩邊平方解答,要注意解答后一定要檢驗.15、630【解析】分析:兩車相向而行5小時共行駛了900千米可得兩車的速度之和為180千米/時,當(dāng)相遇后車共行駛了720千米時,甲車到達(dá)B地,由此則可求得兩車的速度.再根據(jù)甲車返回到A地總用時16.5小時,求出甲車返回時的速度即可求解.詳解:設(shè)甲車,乙車的速度分別為x千米/時,y千米/時,甲車與乙車相向而行5小時相遇,則5(x+y)=900,解得x+y=180,相遇后當(dāng)甲車到達(dá)B地時兩車相距720千米,所需時間為720÷180=4小時,則甲車從A地到B需要9小時,故甲車的速度為900÷9=100千米/時,乙車的速度為180-100=80千米/時,乙車行駛900-720=180千米所需時間為180÷80=2.25小時,甲車從B地到A地的速度為900÷(16.5-5-4)=120千米/時.所以甲車從B地向A地行駛了120×2.25=270千米,當(dāng)乙車到達(dá)A地時,甲車離A地的距離為900-270=630千米.點睛:利用函數(shù)圖象解決實際問題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標(biāo)表示的意義,抓住交點,起點.終點等關(guān)鍵點,理解問題的發(fā)展過程,將實際問題抽象為數(shù)學(xué)問題,從而將這個數(shù)學(xué)問題變化為解答實際問題.16、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進(jìn)行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.17、.【解析】
解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.18、2.1×【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×11-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的1的個數(shù)所決定.【詳解】解:1.111121=2.1×11-2.
故答案為:2.1×11-2.【點睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×11-n,其中1≤|a|<11,n由原數(shù)左邊起第一個不為零的數(shù)字前面的1的個數(shù)所決定.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標(biāo)即可;(3)根據(jù)題意將點轉(zhuǎn)化為直線,點理想值最大時點在上,分析圖形即可.【詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當(dāng)點在與軸切點時,點的“理想值”最小為0.當(dāng)點縱坐標(biāo)與橫坐標(biāo)比值最大時,的“理想值”最大,此時直線與切于點,設(shè)點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點分別為點,點,當(dāng)x=0時,y=3,當(dāng)y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時,LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點,∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時,LQ=,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最小值.作軸于點,則.設(shè)直線與直線的交點為.∵直線中,k=,∴,∴,點F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(jìn)(2,m),∴M點在直線x=2上,∵,∴LQ取最大值時,=,∴作直線y=x,與x=2交于點N,當(dāng)M與ON和x軸同時相切時,半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時要注意做好數(shù)形結(jié)合,根據(jù)圖形進(jìn)行分類討論.20、(1)(2)【解析】
試題分析:首先根據(jù)題意進(jìn)行列表,然后求出各事件的概率.試題解析:(1)P(兩次取得小球的標(biāo)號相同)=;(2)P(兩次取得小球的標(biāo)號的和等于4)=.考點:概率的計算.21、4小時.【解析】
本題依據(jù)題意先得出等量關(guān)系即客車由高速公路從A地道B的速度=客車由普通公路的速度+45,列出方程,解出檢驗并作答.【詳解】解:設(shè)客車由高速公路從甲地到乙地需x小時,則走普通公路需2x小時,根據(jù)題意得:解得x=4經(jīng)檢驗,x=4原方程的根,答:客車由高速公路從甲地到乙地需4時.【點睛】本題主要考查分式方程的應(yīng)用,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.根據(jù)速度=路程÷時間列出相關(guān)的等式,解答即可.22、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】
(1)根據(jù)正方形的性質(zhì),可得EF=CE,再根據(jù)∠CEF=∠90°,進(jìn)而可得∠FEH=∠DCE,結(jié)合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質(zhì)可得FH=ED;(2)設(shè)AE=a,用含a的函數(shù)表示△AEF的面積,再利用函數(shù)的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設(shè)AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當(dāng)AE=2時,△AEF的面積最大.【點睛】本題考查了正方形性質(zhì)、矩形性質(zhì)以及全等三角形的判斷和性質(zhì)和三角形面積有關(guān)的知識點,熟記全等三角形的各種判斷方法是解題的關(guān)鍵.23、(1)CD=BE,理由見解析;(1)證明見解析.【解析】
(1)由兩個三角形為等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據(jù)“SAS”可證得△EAB≌△CAD,即可得出結(jié)論;(1)根據(jù)(1)中結(jié)論和等腰直角三角形的性質(zhì)得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后證得EF=FD,BE=CD,等量代換即可得出結(jié)論.【詳解】解:(1)CD=BE,理由如下:∵△ABC和△ADE為等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB與△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【點睛】本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理等知識,結(jié)合題意尋找出三角形全等的條件是解決此題的關(guān)鍵.24、(1)50,108°,補圖見解析;(2)9.6;(3).【解析】
(1)根據(jù)A景點的人數(shù)以及百分表進(jìn)行計算即可得到該市周邊景點共接待游客數(shù);先求得A景點所對應(yīng)的圓心角的度數(shù),再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進(jìn)行計算即可;根據(jù)B景點接待游客數(shù)補全條形統(tǒng)計圖;(2)根據(jù)E景點接待游客數(shù)所占的百分比,即可估計2018年“五?一”節(jié)選擇去E景點旅游的人數(shù);(3)根據(jù)甲、乙兩個旅行團(tuán)在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據(jù)概率公式進(jìn)行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市周邊景點共接待游客數(shù)為:15÷30%=50(萬人),A景點所對應(yīng)的圓心角的度數(shù)是:30%×360°=108°,B景點接待游客數(shù)為:50×24%=12(萬人),補全條形統(tǒng)計圖如下:(2)∵E景點接待游客數(shù)所占的百分比為:×100%=12%,∴2018年“五?一”節(jié)選擇去E景點旅游的人數(shù)約為:80×12%=9.6(萬人);(3)畫樹狀圖可得:∵共有9種可能出現(xiàn)的結(jié)果,這些結(jié)果出現(xiàn)的可能性相等,其中同時選擇去同一個景點的結(jié)果有3種,∴同時選擇去同一個景點的概率=.【點睛】本題考查列表法與樹狀圖法;用樣本估計總體;扇形統(tǒng)計圖;條形統(tǒng)計圖.25、(1)本次抽樣調(diào)查中的學(xué)生人數(shù)為100人;(2)補全條形統(tǒng)計圖見解析;(3)估計該校課余興趣愛好為“打球”的學(xué)生人數(shù)為800人;(4).【解析】
(1)用選“閱讀”的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);(2)先計算出選“舞蹈”的人數(shù),再計算出選“打球”的人數(shù),然后補全條形統(tǒng)計圖;(3)用2000乘以樣本中選“打球
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度風(fēng)力發(fā)電設(shè)備采購合同擔(dān)保服務(wù)3篇
- 2024版學(xué)校運動場施工合作合同版B版
- 2024年食材供應(yīng)鏈管理合同2篇
- 2024年版:建筑消防排煙系統(tǒng)施工合同
- 2024鐵路工程項目信息化建設(shè)合同樣本3篇
- 2024年足浴城加盟協(xié)議3篇
- 2025年度窗簾行業(yè)發(fā)展趨勢研究與預(yù)測合同3篇
- 工廠供配電技術(shù)
- 2024版建筑木工班組勞務(wù)合作協(xié)議
- 2025年度鍋爐設(shè)備節(jié)能評估與咨詢服務(wù)合同3篇
- 2024年銀發(fā)健康經(jīng)濟趨勢與展望報告:新老人、新需求、新生態(tài)-AgeClub
- 華為質(zhì)量回溯(根因分析與糾正預(yù)防措施)模板
- GB/T 23587-2024淀粉制品質(zhì)量通則
- 法人貸款免責(zé)說明范文
- 中國急性缺血性卒中診治指南(2023)解讀
- 2024-2029年鹽酸咪達(dá)唑侖行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 南方的耕作制度
- 2024年成都溫江興蓉西城市運營集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- 手術(shù)器械生銹的原因分析
- 小學(xué)道德與法治課活動設(shè)計方案
- 家電以舊換新風(fēng)險識別與應(yīng)對措施
評論
0/150
提交評論