甘肅省白銀市平川四中學(xué)中考三模數(shù)學(xué)試題及答案解析_第1頁
甘肅省白銀市平川四中學(xué)中考三模數(shù)學(xué)試題及答案解析_第2頁
甘肅省白銀市平川四中學(xué)中考三模數(shù)學(xué)試題及答案解析_第3頁
甘肅省白銀市平川四中學(xué)中考三模數(shù)學(xué)試題及答案解析_第4頁
甘肅省白銀市平川四中學(xué)中考三模數(shù)學(xué)試題及答案解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

甘肅省白銀市平川四中學(xué)中考三模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖所示的幾何體的左視圖是()A. B. C. D.2.如果實(shí)數(shù)a=,且a在數(shù)軸上對應(yīng)點(diǎn)的位置如圖所示,其中正確的是()A.B.C.D.3.-的立方根是()A.-8 B.-4 C.-2 D.不存在4.如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為()A.(,) B.(2,) C.(,) D.(,3﹣)5.如圖,已知BD與CE相交于點(diǎn)A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.166.如圖:將一個(gè)矩形紙片,沿著折疊,使點(diǎn)分別落在點(diǎn)處.若,則的度數(shù)為()A. B. C. D.7.如圖,共有12個(gè)大不相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個(gè)涂上陰影,則能構(gòu)成這個(gè)正方體的表面展開圖的概率是()A. B. C. D.8.某排球隊(duì)名場上隊(duì)員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊(duì)員換下場上身高為的隊(duì)員,與換人前相比,場上隊(duì)員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大9.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),以點(diǎn)A為圓心,AD為半徑作弧交AB于點(diǎn)E,以點(diǎn)B為圓心,BF為半徑作弧交BC于點(diǎn)G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.610.濰坊市2018年政府工作報(bào)告中顯示,濰坊社會經(jīng)濟(jì)平穩(wěn)運(yùn)行,地區(qū)生產(chǎn)總值增長8%左右,社會消費(fèi)品零售總額增長12%左右,一般公共預(yù)算收入539.1億元,7家企業(yè)入選國家“兩化”融合貫標(biāo)試點(diǎn),濰柴集團(tuán)收入突破2000億元,榮獲中國商標(biāo)金獎(jiǎng).其中,數(shù)字2000億元用科學(xué)記數(shù)法表示為()元.(精確到百億位)A.2×1011B.2×1012C.2.0×1011D.2.0×1010二、填空題(共7小題,每小題3分,滿分21分)11.如圖,六邊形ABCDEF的六個(gè)內(nèi)角都相等.若AB=1,BC=CD=3,DE=2,則這個(gè)六邊形的周長等于_________.12.如果反比例函數(shù)的圖象經(jīng)過點(diǎn)A(2,y1)與B(3,y2),那么的值等于_____________.13.寫出一個(gè)平面直角坐標(biāo)系中第三象限內(nèi)點(diǎn)的坐標(biāo):(__________)14.閱讀材料:設(shè)=(x1,y1),=(x2,y2),如果∥,則x1?y2=x2?y1.根據(jù)該材料填空:已知=(2,3),=(4,m),且∥,則m=_____.15.在日本核電站事故期間,我國某監(jiān)測點(diǎn)監(jiān)測到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.?dāng)?shù)據(jù)“0.0000872”用科學(xué)記數(shù)法可表示為________.16.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到ΔA′B′C′,且點(diǎn)A在A′B′上,則旋轉(zhuǎn)角為________________°.17.若代數(shù)式的值為零,則x=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.19.(5分)如圖,平行四邊形ABCD的對角線AC,BD相交于點(diǎn)O,EF過點(diǎn)O且與AB、CD分別交于點(diǎn)E、F.求證:OE=OF.20.(8分)已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過點(diǎn)A(1,3).求此拋物線的表達(dá)式;如果點(diǎn)A關(guān)于該拋物線對稱軸的對稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.21.(10分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長線上時(shí),其余條件不變,求證:PD﹣PE=CF;請運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長之和.22.(10分)如圖,在每個(gè)小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點(diǎn)字母按逆時(shí)針順序),且面積為10,點(diǎn)M、N均在小正方形的頂點(diǎn)上;(3)連接ME,并直接寫出EM的長.23.(12分)如圖,將矩形ABCD沿對角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.24.(14分)解不等式組:并寫出它的所有整數(shù)解.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.2、C【解析】分析:估計(jì)的大小,進(jìn)而在數(shù)軸上找到相應(yīng)的位置,即可得到答案.詳解:由被開方數(shù)越大算術(shù)平方根越大,即故選C.點(diǎn)睛:考查了實(shí)數(shù)與數(shù)軸的的對應(yīng)關(guān)系,以及估算無理數(shù)的大小,解決本題的關(guān)鍵是估計(jì)的大小.3、C【解析】分析:首先求出的值,然后根據(jù)立方根的計(jì)算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點(diǎn)睛:本題主要考查的是算術(shù)平方根與立方根,屬于基礎(chǔ)題型.理解算術(shù)平方根與立方根的含義是解決本題的關(guān)鍵.4、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點(diǎn)B的坐標(biāo)為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點(diǎn)C落在點(diǎn)D處,∴∠BAD=10°,AD=.過點(diǎn)D作DM⊥x軸于點(diǎn)M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點(diǎn)D的坐標(biāo)為(,).故選A.5、B【解析】

由于ED∥BC,可證得△ABC∽△ADE,根據(jù)相似三角形所得比例線段,即可求得AE的長.【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點(diǎn)睛】本題考查的知識點(diǎn)是相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).6、B【解析】根據(jù)折疊前后對應(yīng)角相等可知.

解:設(shè)∠ABE=x,

根據(jù)折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點(diǎn)睛”本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.7、D【解析】

由正方體表面展開圖的形狀可知,此正方體還缺一個(gè)上蓋,故應(yīng)在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因?yàn)楣灿?2個(gè)大小相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分,所以剩下7個(gè)小正方形.在其余的7個(gè)小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的小正方形有4個(gè),因此先從其余的小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的概率是.故選D.【點(diǎn)睛】本題考查了概率公式,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關(guān)鍵.8、A【解析】分析:根據(jù)平均數(shù)的計(jì)算公式進(jìn)行計(jì)算即可,根據(jù)方差公式先分別計(jì)算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊(duì)員身高的平均數(shù)為==188,方差為S2==;換人后6名隊(duì)員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點(diǎn)睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.9、A【解析】

根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點(diǎn)睛】本題考查扇形面積的計(jì)算、矩形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.10、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】2000億元=2.0×1.

故選:C.【點(diǎn)睛】考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】

凸六邊形ABCDEF,并不是一規(guī)則的六邊形,但六個(gè)角都是110°,所以通過適當(dāng)?shù)南蛲庾餮娱L線,可得到等邊三角形,進(jìn)而求解.【詳解】解:如圖,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點(diǎn)G、H、P.∵六邊形ABCDEF的六個(gè)角都是110°,∴六邊形ABCDEF的每一個(gè)外角的度數(shù)都是60°.∴△AHF、△BGC、△DPE、△GHP都是等邊三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,F(xiàn)A=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六邊形的周長為1+3+3+1+4+1=2.故答案為2.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)及判定定理;解題中巧妙地構(gòu)造了等邊三角形,從而求得周長.是非常完美的解題方法,注意學(xué)習(xí)并掌握.12、【解析】分析:由已知條件易得2y1=k,3y2=k,由此可得2y1=3y2,變形即可求得的值.詳解:∵反比例函數(shù)的圖象經(jīng)過點(diǎn)A(2,y1)與B(3,y2),∴2y1=k,3y2=k,∴2y1=3y2,∴.故答案為:.點(diǎn)睛:明白:若點(diǎn)A和點(diǎn)B在同一個(gè)反比例函數(shù)的圖象上,則是解決本題的關(guān)鍵.13、答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)即可.【解析】

讓橫坐標(biāo)、縱坐標(biāo)為負(fù)數(shù)即可.【詳解】在第三象限內(nèi)點(diǎn)的坐標(biāo)為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)即可.14、6【解析】根據(jù)題意得,2m=3×4,解得m=6,故答案為6.15、【解析】

科學(xué)記數(shù)法的表示形式為ax10n的形式,其中1≤lal<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】解:0.0000872=故答案為:【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.16、50度【解析】

由將△ACB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點(diǎn)睛】此題考查了旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.17、3【解析】由題意得,=0,解得:x=3,經(jīng)檢驗(yàn)的x=3是原方程的根.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)15.【解析】

(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.【詳解】(1)證明:連結(jié)OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結(jié)CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【點(diǎn)睛】考查切線的性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活綜合運(yùn)用所學(xué)知識解決問題.19、見解析【解析】

由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對角線互相平分,即可得OA=OC,易證得△AEO≌△CFO,由全等三角形的對應(yīng)邊相等,可得OE=OF.【詳解】證明:∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定,屬于簡單題,熟悉平行四邊形的性質(zhì)和全等三角形的判定方法是解題關(guān)鍵.20、(1)y=-(x-3)2+5(2)5【解析】

(1)設(shè)頂點(diǎn)式y(tǒng)=a(x-3)2+5,然后把A點(diǎn)坐標(biāo)代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式求解.【詳解】(1)設(shè)此拋物線的表達(dá)式為y=a(x-3)2+5,將點(diǎn)A(1,3)的坐標(biāo)代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達(dá)式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點(diǎn)睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,掌握待定系數(shù)法求二次函數(shù)的解析式是解題的關(guān)鍵.21、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】

小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長AD,BC交于點(diǎn)F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn),∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長之和=DE+DM+EM+CN+EN+EC=D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論