浙江省杭州城區(qū)6校中考四模數(shù)學(xué)試題及答案解析_第1頁(yè)
浙江省杭州城區(qū)6校中考四模數(shù)學(xué)試題及答案解析_第2頁(yè)
浙江省杭州城區(qū)6校中考四模數(shù)學(xué)試題及答案解析_第3頁(yè)
浙江省杭州城區(qū)6校中考四模數(shù)學(xué)試題及答案解析_第4頁(yè)
浙江省杭州城區(qū)6校中考四模數(shù)學(xué)試題及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省杭州城區(qū)6校中考四模數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一個(gè)不透明的袋子里裝著質(zhì)地、大小都相同的3個(gè)紅球和2個(gè)綠球,隨機(jī)從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機(jī)摸出一球.兩次都摸到紅球的概率是()A. B. C. D.2.已知二次函數(shù)y=3(x﹣1)2+k的圖象上有三點(diǎn)A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關(guān)系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y13.下面調(diào)查中,適合采用全面調(diào)查的是()A.對(duì)南寧市市民進(jìn)行“南寧地鐵1號(hào)線線路”B.對(duì)你安寧市食品安全合格情況的調(diào)查C.對(duì)南寧市電視臺(tái)《新聞在線》收視率的調(diào)查D.對(duì)你所在的班級(jí)同學(xué)的身高情況的調(diào)查4.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過(guò)點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長(zhǎng)度是()A.3cm B.cm C.2.5cm D.cm5.方程有兩個(gè)實(shí)數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<16.如右圖,⊿ABC內(nèi)接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°7.已知一元二次方程2x2+2x﹣1=0的兩個(gè)根為x1,x2,且x1<x2,下列結(jié)論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=8.下列所述圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形9.如圖,是的外接圓,已知,則的大小為A. B. C. D.10.對(duì)于不等式組,下列說(shuō)法正確的是()A.此不等式組的正整數(shù)解為1,2,3B.此不等式組的解集為C.此不等式組有5個(gè)整數(shù)解D.此不等式組無(wú)解11.已知函數(shù),則使y=k成立的x值恰好有三個(gè),則k的值為()A.0 B.1 C.2 D.312.如圖,在△ABC中,點(diǎn)D是AB邊上的一點(diǎn),若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.4二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.出售某種手工藝品,若每個(gè)獲利x元,一天可售出個(gè),則當(dāng)x=_________元,一天出售該種手工藝品的總利潤(rùn)y最大.14.如圖,以原點(diǎn)O為圓心的圓交X軸于A、B兩點(diǎn),交y軸的正半軸于點(diǎn)C,D為第一象限內(nèi)⊙O上的一點(diǎn),若∠DAB=20°,則∠OCD=.15.?dāng)?shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長(zhǎng)方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長(zhǎng)方形面積相等”這一推論,如圖所示,若SEBMF=1,則SFGDN=_____.16.點(diǎn)P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再?gòu)挠嘞碌乃膫€(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是.17.隨意的拋一粒豆子,恰好落在圖中的方格中(每個(gè)方格除顏色外完全相同),那么這粒豆子落在黑色方格中的可能性是_____.18.如圖所示,D、E之間要挖建一條直線隧道,為計(jì)算隧道長(zhǎng)度,工程人員在線段AD和AE上選擇了測(cè)量點(diǎn)B,C,已知測(cè)得AD=100,AE=200,AB=40,AC=20,BC=30,則通過(guò)計(jì)算可得DE長(zhǎng)為_(kāi)____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,拋物線與x軸交于A,B,與y軸交于點(diǎn)C(0,2),直線經(jīng)過(guò)點(diǎn)A,C.(1)求拋物線的解析式;(2)點(diǎn)P為直線AC上方拋物線上一動(dòng)點(diǎn);①連接PO,交AC于點(diǎn)E,求的最大值;②過(guò)點(diǎn)P作PF⊥AC,垂足為點(diǎn)F,連接PC,是否存在點(diǎn)P,使△PFC中的一個(gè)角等于∠CAB的2倍?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.20.(6分)已知關(guān)于的一元二次方程(為實(shí)數(shù)且).求證:此方程總有兩個(gè)實(shí)數(shù)根;如果此方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求正整數(shù)的值.21.(6分)如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的10×10網(wǎng)格中,已知點(diǎn)O,A,B均為網(wǎng)格線的交點(diǎn).在給定的網(wǎng)格中,以點(diǎn)O為位似中心,將線段AB放大為原來(lái)的2倍,得到線段(點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為).畫出線段;將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到線段.畫出線段;以為頂點(diǎn)的四邊形的面積是個(gè)平方單位.22.(8分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.23.(8分)如圖,已知拋物線與軸交于兩點(diǎn)(A點(diǎn)在B點(diǎn)的左邊),與軸交于點(diǎn).(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱軸上,若以為邊,以點(diǎn)、、、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)的坐標(biāo);(3)如圖2,過(guò)點(diǎn)作直線的平行線交拋物線于另一點(diǎn),交軸于點(diǎn),若﹕=1﹕1.求的值.24.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).求一次函數(shù)關(guān)系式;根據(jù)圖象直接寫出kx+b﹣>0的x的取值范圍;求△AOB的面積.25.(10分)一個(gè)不透明的袋子中,裝有標(biāo)號(hào)分別為1、-1、2的三個(gè)小球,他們除標(biāo)號(hào)不同外,其余都完全相同;攪勻后,從中任意取一個(gè)球,標(biāo)號(hào)為正數(shù)的概率是;攪勻后,從中任取一個(gè)球,標(biāo)號(hào)記為k,然后放回?cái)噭蛟偃∫粋€(gè)球,標(biāo)號(hào)記為b,求直線y=kx+b經(jīng)過(guò)一、二、三象限的概率.26.(12分)一次函數(shù)y=34x的圖象如圖所示,它與二次函數(shù)y=ax2(1)求點(diǎn)C的坐標(biāo);(2)設(shè)二次函數(shù)圖象的頂點(diǎn)為D.①若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,且△ACD的面積等于3,求此二次函數(shù)的關(guān)系式;②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.27.(12分)綜合與實(shí)踐﹣猜想、證明與拓廣問(wèn)題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問(wèn)題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開(kāi)了討論:小敏:根據(jù)軸對(duì)稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請(qǐng)你說(shuō)明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

列表或畫樹(shù)狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.2、D【解析】試題分析:根據(jù)二次函數(shù)的解析式y(tǒng)=3(x-1)2+k,可知函數(shù)的開(kāi)口向上,對(duì)稱軸為x=1,根據(jù)函數(shù)圖像的對(duì)稱性,可得這三點(diǎn)的函數(shù)值的大小為y3>y2>y1.故選D點(diǎn)睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解題時(shí)先根據(jù)頂點(diǎn)式求出開(kāi)口方向,和對(duì)稱軸,然后根據(jù)函數(shù)的增減性比較即可,這是中考常考題,難度有點(diǎn)偏大,注意結(jié)合圖形判斷驗(yàn)證.3、D【解析】

根據(jù)普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時(shí)間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【詳解】A、對(duì)南寧市市民進(jìn)行“南寧地鐵1號(hào)線線路”適宜采用抽樣調(diào)查方式;B、對(duì)你安寧市食品安全合格情況的調(diào)查適宜采用抽樣調(diào)查方式;C、對(duì)南寧市電視臺(tái)《新聞在線》收視率的調(diào)查適宜采用抽樣調(diào)查方式;D、對(duì)你所在的班級(jí)同學(xué)的身高情況的調(diào)查適宜采用普查方式;故選D.【點(diǎn)睛】本題考查的是抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對(duì)象的特征靈活選用,一般來(lái)說(shuō),對(duì)于具有破壞性的調(diào)查、無(wú)法進(jìn)行普查、普查的意義或價(jià)值不大,應(yīng)選擇抽樣調(diào)查,對(duì)于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.4、D【解析】分析:根據(jù)垂徑定理得出OE的長(zhǎng),進(jìn)而利用勾股定理得出BC的長(zhǎng),再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點(diǎn)睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長(zhǎng).5、D【解析】當(dāng)k=1時(shí),原方程不成立,故k≠1,當(dāng)k≠1時(shí),方程為一元二次方程.∵此方程有兩個(gè)實(shí)數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.6、A【解析】

連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對(duì)等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對(duì)的圓周角是所對(duì)的圓心角的一半),∴∠C=62°;故選A7、D【解析】【分析】直接利用根與系數(shù)的關(guān)系對(duì)A、B進(jìn)行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質(zhì)得到x1、x2異號(hào),且負(fù)數(shù)的絕對(duì)值大,則可對(duì)C進(jìn)行判斷;利用一元二次方程解的定義對(duì)D進(jìn)行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項(xiàng)錯(cuò)誤;∵x1+x2<0,x1x2<0,∴x1、x2異號(hào),且負(fù)數(shù)的絕對(duì)值大,故C選項(xiàng)錯(cuò)誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項(xiàng)正確,故選D.【點(diǎn)睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關(guān)系,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.8、B【解析】

根據(jù)中心對(duì)稱圖形和軸對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、線段,是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;

B、等邊三角形,是軸對(duì)稱圖形但不是中心對(duì)稱圖形,故本選項(xiàng)符合題意;

C、正方形,是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;

D、平行四邊形,不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)不符合題意.

故選:B.【點(diǎn)睛】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.9、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.10、A【解析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數(shù)解為1,2,1.故選A.點(diǎn)睛:本題考查了一元一次不等式組的整數(shù)解:利用數(shù)軸確定不等式組的解(整數(shù)解).解決此類問(wèn)題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對(duì)于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.11、D【解析】

解:如圖:利用頂點(diǎn)式及取值范圍,可畫出函數(shù)圖象會(huì)發(fā)現(xiàn):當(dāng)x=3時(shí),y=k成立的x值恰好有三個(gè).故選:D.12、C【解析】

∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點(diǎn):相似三角形的判定與性質(zhì).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】先根據(jù)題意得出總利潤(rùn)y與x的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的最值問(wèn)題進(jìn)行解答.解:∵出售某種手工藝品,若每個(gè)獲利x元,一天可售出(8-x)個(gè),

∴y=(8-x)x,即y=-x2+8x,

∴當(dāng)x=-=1時(shí),y取得最大值.

故答案為:1.14、65°【解析】

解:由題意分析之,得出弧BD對(duì)應(yīng)的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點(diǎn):本題考查了圓周角和圓心角的關(guān)系點(diǎn)評(píng):此類試題屬于難度一般的試題,考生在解答此類試題時(shí)一定要對(duì)圓心角、弧、弦等的基本性質(zhì)要熟練把握15、1【解析】

根據(jù)從長(zhǎng)方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長(zhǎng)方形面積相等得SEBMF=SFGDN,得SFGDN.【詳解】∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.【點(diǎn)睛】本題考查面積的求解,解題的關(guān)鍵是讀懂題意.16、【解析】畫樹(shù)狀圖為:共有20種等可能的結(jié)果數(shù),其中點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的結(jié)果數(shù)為4,所以點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率==.故答案為.17、【解析】

根據(jù)面積法:求出豆子落在黑色方格的面積與總面積的比即可解答.【詳解】∵共有15個(gè)方格,其中黑色方格占5個(gè),∴這粒豆子落在黑色方格中的概率是=,故答案為.【點(diǎn)睛】此題考查了幾何概率的求法,利用概率=相應(yīng)的面積與總面積之比求出是解題關(guān)鍵.18、1.【解析】

先根據(jù)相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性質(zhì)解答即可.【詳解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案為1.【點(diǎn)睛】考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得A,C點(diǎn)坐標(biāo),根據(jù)代定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)相似三角形的判定與性質(zhì),可得,根據(jù)平行于y軸直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)D,求得D(,0),得到DA=DC=DB=,過(guò)P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結(jié)論.【詳解】(1)當(dāng)x=0時(shí),y=2,即C(0,2),當(dāng)y=0時(shí),x=4,即A(4,0),將A,C點(diǎn)坐標(biāo)代入函數(shù)解析式,得,解得,拋物線的解析是為;

(2)過(guò)點(diǎn)P向x軸做垂線,交直線AC于點(diǎn)M,交x軸于點(diǎn)N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設(shè)點(diǎn)P(x,-x2+x+2),則點(diǎn)M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當(dāng)x=2時(shí),=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過(guò)P作x軸的平行線交y軸于R,交AC的延長(zhǎng)線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設(shè)FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點(diǎn)坐標(biāo)是(2,3)或(,).【點(diǎn)睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用相似三角形的判定與性質(zhì)得出,又利用了二次函數(shù)的性質(zhì);解(3)的關(guān)鍵是利用解直角三角形,要分類討論,以防遺漏.20、(1)證明見(jiàn)解析;(2)或.【解析】

(1)求出△的值,再判斷出其符號(hào)即可;(2)先求出x的值,再由方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且m是正整數(shù)求出m的值即可.【詳解】(1)依題意,得,,.∵,∴方程總有兩個(gè)實(shí)數(shù)根.(2)∵,∴,.∵方程的兩個(gè)實(shí)數(shù)根都是整數(shù),且是正整數(shù),∴或.∴或.【點(diǎn)睛】本題考查的是根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac的關(guān)系是解答此題的關(guān)鍵.21、(1)畫圖見(jiàn)解析;(2)畫圖見(jiàn)解析;(3)20【解析】【分析】(1)結(jié)合網(wǎng)格特點(diǎn),連接OA并延長(zhǎng)至A1,使OA1=2OA,同樣的方法得到B1,連接A1B1即可得;(2)結(jié)合網(wǎng)格特點(diǎn)根據(jù)旋轉(zhuǎn)作圖的方法找到A2點(diǎn),連接A2B1即可得;(3)根據(jù)網(wǎng)格特點(diǎn)可知四邊形AA1B1A2是正方形,求出邊長(zhǎng)即可求得面積.【詳解】(1)如圖所示;(2)如圖所示;(3)結(jié)合網(wǎng)格特點(diǎn)易得四邊形AA1B1A2是正方形,AA1=,所以四邊形AA1B1A2的面積為:=20,故答案為20.【點(diǎn)睛】本題考查了作圖-位似變換,旋轉(zhuǎn)變換,能根據(jù)位似比、旋轉(zhuǎn)方向和旋轉(zhuǎn)角得到關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是作圖的關(guān)鍵.22、證明見(jiàn)解析.【解析】試題分析:由可得則可證明,因此可得試題解析:即,在和中,考點(diǎn):三角形全等的判定.23、(1);(2)和;(3)【解析】

(1)設(shè),,再根據(jù)根與系數(shù)的關(guān)系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標(biāo),設(shè)出點(diǎn)Q坐標(biāo),利用平行四邊形的性質(zhì),分類討論點(diǎn)P坐標(biāo),利用全等的性質(zhì)得出P點(diǎn)的橫坐標(biāo)后,分別代入拋物線解析式,求出P點(diǎn)坐標(biāo);(3)過(guò)點(diǎn)作DH⊥軸于點(diǎn),由::,可得::.設(shè),可得點(diǎn)坐標(biāo)為,可得.設(shè)點(diǎn)坐標(biāo)為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設(shè),,則是方程的兩根,∴.∵已知拋物線與軸交于點(diǎn).∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點(diǎn)、、、Q為頂點(diǎn)的四邊形是四邊形時(shí),設(shè)拋物線的對(duì)稱軸為,l與交于點(diǎn),過(guò)點(diǎn)作⊥l,垂足為點(diǎn),即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點(diǎn)的橫坐標(biāo)為,∴即點(diǎn)坐標(biāo)為.②當(dāng)以為邊,以點(diǎn)、、、Q為頂點(diǎn)的四邊形是四邊形時(shí),設(shè)拋物線的對(duì)稱軸為,l與交于點(diǎn),過(guò)點(diǎn)作⊥l,垂足為點(diǎn),即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點(diǎn)的橫坐標(biāo)為,∴即點(diǎn)坐標(biāo)為∴符合條件的點(diǎn)坐標(biāo)為和.過(guò)點(diǎn)作DH⊥軸于點(diǎn),∵::,∴::.設(shè),則點(diǎn)坐標(biāo)為,∴.∵點(diǎn)在拋物線上,∴點(diǎn)坐標(biāo)為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點(diǎn)睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運(yùn)用數(shù)形結(jié)合分類討論思想.24、(1)y=-2x+1;(2)1<x<2;(2)△AOB的面積為1.【解析】試題分析:(1)首先根據(jù)A(m,6),B(2,n)兩點(diǎn)在反比例函數(shù)y=(x>0)的圖象上,求出m,n的值各是多少;然后求出一次函數(shù)的解析式,再根據(jù)一元二次不等式的求法,求出x的取值范圍即可.(2)由-2x+1-<0,求出x的取值范圍即可.(2)首先分別求出C點(diǎn)、D點(diǎn)的坐標(biāo)的坐標(biāo)各是多少;然后根據(jù)三角形的面積的求法,求出△AOB的面積是多少即可.試題解析:(1)∵A(m,6),B(2,n)兩點(diǎn)在反比例函數(shù)y=(x>0)的圖象上,∴6=,,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函數(shù)y=kx+b的圖象上,∴,解得,∴y=-2x+1.(2)由-2x+1-<0,解得0<x<1或x>2.(2)當(dāng)x=0時(shí),y=-2×0+1=1,∴C點(diǎn)的坐標(biāo)是(0,1);當(dāng)y=0時(shí),0=-2x+1,解得x=4,∴D點(diǎn)的坐標(biāo)是(4,0);∴S△AOB=×4×1-×1×1-×4×2=16-4-4=1.25、(1);(2)【解析】【分析】(1)直接運(yùn)用概率的定義求解;(2)根據(jù)題意確定k>0,b>0,再通過(guò)列表計(jì)算概率.【詳解】解:(1)因?yàn)?、-1、2三個(gè)數(shù)中由兩個(gè)正數(shù),所以從中任意取一個(gè)球,標(biāo)號(hào)為正數(shù)的概率是.(2)因?yàn)橹本€y=kx+b經(jīng)過(guò)一、二、三象限,所以k>0,b>0,又因?yàn)槿∏闆r:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經(jīng)過(guò)一、二、三象限的概率是.【點(diǎn)睛】本題考核知識(shí)點(diǎn):求規(guī)概率.解題關(guān)鍵:把所有的情況列出,求出要得到的情況的種數(shù),再用公式求出.26、(1)點(diǎn)C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數(shù)y=ax1-4ax+c對(duì)稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點(diǎn)C的坐標(biāo);(1)①根據(jù)點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱即可得點(diǎn)D的坐標(biāo),并且求得CD的長(zhǎng),設(shè)A(m,34m),根據(jù)S△ACD=3即可求得m的值,即求得點(diǎn)A的坐標(biāo),把A.D的坐標(biāo)代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數(shù)的表達(dá)式.②設(shè)A(m,34m)(m<1),過(guò)點(diǎn)A作AE⊥CD于E,則AE=1-m,CE=根據(jù)勾股定理用m表示出AC的長(zhǎng),根據(jù)△ACD的面積等于10可求得m的值,即可得A點(diǎn)的坐標(biāo),分兩種情況:第一種情況,若a>0,則點(diǎn)D在點(diǎn)C下方,求點(diǎn)D的坐標(biāo);第二種情況,若a<0,則點(diǎn)D在點(diǎn)C上方,求點(diǎn)D的坐標(biāo),分別把A、D的坐標(biāo)代入y=ax1-4ax+c即可求得函數(shù)表達(dá)式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數(shù)圖像的對(duì)稱軸為直線x=1.當(dāng)x=1時(shí),y=34x=32,∴C(1,(1)①∵點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,∴D(1,-32設(shè)A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設(shè)A(m,34m)(m<1),過(guò)點(diǎn)A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點(diǎn)D在點(diǎn)C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點(diǎn)D在點(diǎn)C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點(diǎn):二次函數(shù)與一次函數(shù)的綜合題.27、(1)GF=GD,GF⊥GD;(2)見(jiàn)解析;(3)見(jiàn)解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論