版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省東莞市三校2024年高考全國統(tǒng)考預測密卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象大致為()A. B.C. D.2.已知平面平面,且是正方形,在正方形內(nèi)部有一點,滿足與平面所成的角相等,則點的軌跡長度為()A. B.16 C. D.3.已知函數(shù),則()A.1 B.2 C.3 D.44.函數(shù)的圖象可能是()A. B. C. D.5.已知集合,,則為()A. B. C. D.6.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.7.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.8.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.39.已知拋物線的焦點為,若拋物線上的點關(guān)于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.10.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.11.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內(nèi),點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心12.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),且由的最大值是_________14.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結(jié)論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號是________________.15.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.16.在中,,是的角平分線,設,則實數(shù)的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)若,求函數(shù)的值域;(2)設為的三個內(nèi)角,若,求的值;18.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.19.(12分)在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點為,當變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系,設射線的極坐標方程為,,點為射線與曲線的交點,求點的極徑.20.(12分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.21.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設為的中點,為上的動點(不與重合)求二面角的正切值的最小值22.(10分)已知函數(shù).(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)時,若對一切恒成立,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.2、C【解析】
根據(jù)與平面所成的角相等,判斷出,建立平面直角坐標系,求得點的軌跡方程,由此求得點的軌跡長度.【詳解】由于平面平面,且交線為,,所以平面,平面.所以和分別是直線與平面所成的角,所以,所以,即,所以.以為原點建立平面直角坐標系如下圖所示,則,,設(點在第一象限內(nèi)),由得,即,化簡得,由于點在第一象限內(nèi),所以點的軌跡是以為圓心,半徑為的圓在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以點的軌跡長度為.故選:C【點睛】本小題主要考查線面角的概念和運用,考查動點軌跡方程的求法,考查空間想象能力和邏輯推理能力,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于難題.3、C【解析】
結(jié)合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎題.4、A【解析】
先判斷函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項.【詳解】函數(shù)的定義域為,,該函數(shù)為偶函數(shù),排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式辨別函數(shù)的圖象,一般分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,結(jié)合排除法得出結(jié)果,考查分析問題和解決問題的能力,屬于中等題.5、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.6、C【解析】
當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.7、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學生的空間想象能力,屬于中檔題.8、C【解析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.9、B【解析】
由焦點得拋物線方程,設點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質(zhì),點關(guān)于直線對稱,屬于中檔題.10、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎題.11、A【解析】
根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.12、B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。14、①②③【解析】
①點在平面內(nèi)的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設,則由可得,然后對應邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點睛】此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.15、【解析】
根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對數(shù)運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關(guān)鍵是能夠利用圓的性質(zhì)和對數(shù)運算法則構(gòu)造出滿足的方程,由此得到結(jié)果.16、【解析】
設,,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設,,,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學生轉(zhuǎn)化劃歸,綜合分析,數(shù)學運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內(nèi)角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題,18、(1)2;(2)見解析【解析】
(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點睛】本題考查基本不等式的應用,利用基本不等式和放縮法求最值,考查化簡計算能力.19、(1);(2)【解析】
(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設Q點的直角坐標系坐標為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設Q點的直角坐標系坐標為,由可得代入曲線C的方程可得,解得(舍),所以點的極徑為.【點睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標方程,極徑的求法,屬于中檔題.20、(1)1(2)1【解析】分析:(1)當時可得,可得.(2)先得到關(guān)系式,累乘可得,從而可得,即為定值.詳解:(1)當時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數(shù)的有關(guān)運算,解題時要注意所給出的的定義,并結(jié)合組合數(shù)公式求解.由于運算量較大,解題時要注意運算的準確性,避免出現(xiàn)錯誤.21、(1)見解析(2)【解析】
(1)推導出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標原點,建立如圖所示空間坐標系,設,利用空間向量法表示出二面角的余弦值,當余弦值取得最大時,正切值求得最小值;【詳解】(1)因為,面,,平面,平面,平面,又平面,平面平面;(2)過作,以為坐標原點,建立如圖所示空
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44569.1-2024土工合成材料內(nèi)部節(jié)點強度的測定第1部分:土工格室
- 橋梁建筑工程合同書
- 來料加工終止協(xié)議書模板
- 工地安全監(jiān)控系統(tǒng)安裝合同
- 工程建設招標投標合同(投標保函樣本)
- 代理合同參考樣式
- 2024年度股票托管委托協(xié)議書
- 地質(zhì)勘探合同
- 獨家代理合作協(xié)議范例
- 碎石運輸合同協(xié)議2024年
- 建設工程材料送檢規(guī)范匯總
- 通用BIQS培訓資料課件
- 性健康教育課件
- 影響世界的工業(yè)革命 2023屆高三統(tǒng)編版歷史一輪復習
- 職業(yè)學院教師教學創(chuàng)新團隊建設管理辦法
- 微型計算機原理與應用習題集及答案
- 河北省唐山市藥品零售藥店企業(yè)藥房名單目錄
- 喵喵老師制作 電子百拼的黑白電路圖
- DB34-T 4010-2021 水利工程外觀質(zhì)量評定規(guī)程-高清現(xiàn)行
- 《整改報告》模板
- 送達地址確認書(樣本)
評論
0/150
提交評論