江蘇省鹽城市射陽中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第1頁
江蘇省鹽城市射陽中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第2頁
江蘇省鹽城市射陽中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第3頁
江蘇省鹽城市射陽中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第4頁
江蘇省鹽城市射陽中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省鹽城市射陽中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.方程的解所在的區(qū)間為()A. B.C. D.2.某市新上了一批便民公共自行車,有綠色和橙黃色兩種顏色,且綠色公共自行車和橙黃色公共自行車的數(shù)量比為2∶1,現(xiàn)在按照分層抽樣的方法抽取36輛這樣的公共自行車放在某校門口,則其中綠色公共自行車的輛數(shù)是()A.8 B.12 C.16 D.243.函數(shù)的大致圖像是下列哪個選項()A. B.C. D.4.已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則()A.既有極小值,也有極大值 B.有極小值,但無極大值C.有極大值,但無極小值 D.既無極小值,也無極大值5.已知向量若為實數(shù),則=()A.2 B.1 C. D.6.將圖像向左平移個單位,所得的函數(shù)為()A. B.C. D.7.為研究需要,統(tǒng)計了兩個變量x,y的數(shù)據(jù)·情況如下表:其中數(shù)據(jù)x1、x2、x3…xn,和數(shù)據(jù)y1、y2、y3,…yn的平均數(shù)分別為和,并且計算相關(guān)系數(shù)r=-1.8,回歸方程為,有如下幾個結(jié)論:①點(,)必在回歸直線上,即=b+;②變量x,y的相關(guān)性強;③當(dāng)x=x1,則必有;④b<1.其中正確的結(jié)論個數(shù)為A.1 B.2 C.3 D.48.某型號汽車使用年限與年維修費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表,由最小二乘法求得回歸方程.現(xiàn)發(fā)現(xiàn)表中有一個數(shù)據(jù)看不清,推測該數(shù)據(jù)的值為()使用年限維修費A. B.C. D.9.過點且與直線垂直的直線方程是.A. B. C. D.10.不等式x2+ax+4>0對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()A.(﹣4,4) B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,+∞) D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,以為直徑的圓中,,在圓上,,于,于,,記,,的面積和為,則的最大值為______.12.已知,且是第一象限角,則的值為__________.13.若角的終邊過點,則______.14.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為,若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側(cè)面積為________.15.關(guān)于的不等式,對于恒成立,則實數(shù)的取值范圍為_______.16.在數(shù)列中,,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知為等差數(shù)列,且(Ⅰ)求數(shù)列的通項公式;(Ⅱ)記的前項和為,若成等比數(shù)列,求正整數(shù)的值.18.在中,角所對的邊分別為,滿足(1)求的值;(2)若,求b的取值范圍.19.函數(shù)在同一個周期內(nèi),當(dāng)時,取最大值1,當(dāng)時,取最小值-1.(1)求函數(shù)的單調(diào)遞減區(qū)間.(2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和.20.已知函數(shù)f(x)=2cosx(sinx﹣cosx).(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間:(2)將f(x)的圖象向左平移個單位后得到函數(shù)g(x)的圖象,若方程g(x)=m在區(qū)間[0,]上有解,求實數(shù)m的取值范圍.21.已知數(shù)列的前項和為,且,.(1)求證:數(shù)列的通項公式;(2)設(shè),,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由題意得,設(shè)函數(shù),則,所以,所以方程的解所在的區(qū)間為,故選B.考點:函數(shù)的零點.2、D【解析】設(shè)放在該校門口的綠色公共自行車的輛數(shù)是x,則,解得x=1.故選D3、B【解析】

化簡,然后作圖,值域小于部分翻折關(guān)于軸對稱即可.【詳解】,的圖象與關(guān)于軸對稱,將部分向上翻折,圖象變化過程如下:軸上方部分圖形即為所求圖象.故選:B.【點睛】本題主要考查圖形的對稱變化,掌握關(guān)于軸對稱是解決問題的關(guān)鍵.屬于中檔題.4、B【解析】由導(dǎo)函數(shù)圖象可知,在上為負(fù),在上非負(fù),在上遞減,在遞增,在處有極小值,無極大值,故選B.5、D【解析】

求出向量的坐標(biāo),然后根據(jù)向量的平行得到所求值.【詳解】∵,∴.又,∴,解得.故選D.【點睛】本題考查向量的運算和向量共線的坐標(biāo)表示,屬于基礎(chǔ)題.6、A【解析】

根據(jù)三角函數(shù)的圖象的平移變換得到所求.【詳解】由已知將函數(shù)y=cos2x的圖象向左平移個單位,所得的函數(shù)為y=cos2(x)=cos(2x);故選:A.【點睛】本題考查了三角函數(shù)的圖象的平移;明確平移規(guī)律是解答的關(guān)鍵.7、C【解析】

根據(jù)回歸方程的性質(zhì)和相關(guān)系數(shù)的性質(zhì)求解.【詳解】回歸直線經(jīng)過樣本中心點,故①正確;變量的相關(guān)系數(shù)的絕對值越接近與1,則兩個變量的相關(guān)性越強,故②正確;根據(jù)回歸方程的性質(zhì),當(dāng)時,不一定有,故③錯誤;由相關(guān)系數(shù)知負(fù)相關(guān),所以,故④正確;故選C.【點睛】本題考查回歸直線和相關(guān)系數(shù),注意根據(jù)回歸方程得出的是估計值不是準(zhǔn)確值.8、C【解析】

設(shè)所求數(shù)據(jù)為,計算出和,然后將點代入回歸直線方程可求出的值.【詳解】設(shè)所求數(shù)據(jù)為,則,,由于回歸直線過樣本的中心點,則有,解得,故選:C.【點睛】本題考查利用回歸直線計算原始數(shù)據(jù),解題時要充分利用“回歸直線過樣本中心點”這一結(jié)論的應(yīng)用,考查運算求解能力,屬于基礎(chǔ)題.9、A【解析】

根據(jù)與已知直線垂直的直線系方程可假設(shè)直線為,代入點解得直線方程.【詳解】設(shè)與直線垂直的直線為:代入可得:,解得:所求直線方程為:,即本題正確選項:【點睛】本題考查利用兩條直線的垂直關(guān)系求解直線方程的問題,屬于基礎(chǔ)題.10、A【解析】

根據(jù)二次函數(shù)的性質(zhì)求解.【詳解】不等式x2+ax+4>0對任意實數(shù)x恒成立,則,∴.故選A.【點睛】本題考查一元二次不等式恒成立問題,解題時可借助二次函數(shù)的圖象求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

可設(shè),表示出S關(guān)于的函數(shù),從而轉(zhuǎn)化為三角函數(shù)的最大值問題.【詳解】設(shè),則,,,當(dāng)時,.【點睛】本題主要考查函數(shù)的實際運用,三角函數(shù)最值問題,意在考查學(xué)生的劃歸能力,分析能力和數(shù)學(xué)建模能力.12、;【解析】

利用兩角和的公式把題設(shè)展開后求得的值,進而利用的范圍判斷的范圍,利用同角三角函數(shù)的基本關(guān)系求得的值,最后利用誘導(dǎo)公式和對原式進行化簡,把的值和題設(shè)條件代入求解即可.【詳解】,,即,,兩邊同時平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【點睛】本題考查了兩角差的余弦公式、誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系,需熟記三角函數(shù)中的公式,屬于中檔題.13、-2【解析】

由正切函數(shù)定義計算.【詳解】根據(jù)正切函數(shù)定義:.故答案為-2.【點睛】本題考查三角函數(shù)的定義,掌握三角函數(shù)定義是解題基礎(chǔ).14、【解析】

先求出四棱錐的底面對角線的長度,結(jié)合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,可知四條側(cè)棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側(cè)面積.【詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側(cè)棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側(cè)面積為.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,考查了學(xué)生的空間想象能力與計算求解能力,屬于中檔題.15、或【解析】

利用換元法令,則對任意的恒成立,再對分兩種情況討論,令求出函數(shù)的最小值,即可得答案.【詳解】令,則對任意的恒成立,(1)當(dāng),即時,上式顯然成立;(2)當(dāng),即時,令①當(dāng)時,,顯然不成立,故不成立;②當(dāng)時,,∴解得:綜上所述:或.故答案為:或.【點睛】本題考查含絕對值函數(shù)的最值問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力,求解時注意分段函數(shù)的最值求解.16、-1【解析】

首先根據(jù),得到是以,的等差數(shù)列.再計算其前項和即可求出,的值.【詳解】因為,.所以數(shù)列是以,的等差數(shù)列.所以.所以,,.故答案為:【點睛】本題主要考查等差數(shù)列的判斷和等差數(shù)列的前項和的計算,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、:(Ⅰ)(Ⅱ)【解析】試題分析:(Ⅰ)設(shè)等差數(shù)列{an}的公差等于d,則由題意可得,解得a1=1,d=1,從而得到{an}的通項公式.(Ⅱ)由(Ⅰ)可得{an}的前n項和為Sn==n(n+1),再由=a1Sk+1,求得正整數(shù)k的值.解:(Ⅰ)設(shè)等差數(shù)列{an}的公差等于d,則由題意可得,解得a1=1,d=1.∴{an}的通項公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n項和為Sn==n(n+1).∵若a1,ak,Sk+1成等比數(shù)列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考點:等比數(shù)列的性質(zhì);等差數(shù)列的通項公式.18、(1)(2)【解析】

(1)代入條件化簡得,再由同角三角函數(shù)基本關(guān)系求出;(2)利用余弦定理、,把表示成關(guān)于的二次函數(shù).【詳解】(1),,即,,,又,解得:.(2),可得,由余弦定理可得:,,所以b的取值范圍為.【點睛】對于運動變化問題,常用函數(shù)與方程的思想進行研究,所以自然而然想到構(gòu)造以是關(guān)于或的函數(shù).19、(1),;(2).【解析】

(1)先求出周期得,由最高點坐標(biāo)可求得,然后由正弦函數(shù)的單調(diào)性得結(jié)論;(2)由直線與的圖象交點的對稱性可得.【詳解】(1)由題意,∴,又,,,由得,∴,令得,∴單調(diào)減區(qū)間是,;(2)在含有三個周期,如圖,的圖象與在上有六個交點,前面兩個交點關(guān)于直線對稱,中間兩個關(guān)于直線對稱,最后兩個關(guān)于直線對稱,∴所求六個根的和為.【點睛】本題考查由三角函數(shù)的性質(zhì)求解析式,考查函數(shù)的單調(diào)性,考查函數(shù)零點與方程根的分布問題.函數(shù)零點與方程根的分布問題可用數(shù)形結(jié)合思想,把方程的根轉(zhuǎn)化為函數(shù)圖象與直線交點的橫坐標(biāo),再利用對稱性求解.20、(1)函數(shù)的最小正周期為π;函數(shù)的減區(qū)間為[kπ,kπ],k∈Z(2)m∈[﹣2,1]【解析】

(1)利用三角恒等變換化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性和單調(diào)性,得出結(jié)論;(2)利用正弦函數(shù)的定義域和值域,求得的范圍,進而可得的范圍.【詳解】(1)函數(shù)f(x)=2cosx(sinx﹣cosx)sin2x﹣(1+cos2x)=2sin(2x)﹣1,故函數(shù)的最小正周期為π.令2kπ2x2kπ,求得kπx≤kπ,可得函數(shù)的減區(qū)間為[kπ,kπ],k∈Z.(2)將f(x)的圖象向左平移個單位后,得到函數(shù)g(x)=2sin(2x)﹣1=2si

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論