![內(nèi)蒙古自治區(qū)2023-2024學(xué)年高一下數(shù)學(xué)期末考試試題含解析_第1頁(yè)](http://file4.renrendoc.com/view3/M03/34/32/wKhkFmZmicOATJ4KAAIWhHjqB9I362.jpg)
![內(nèi)蒙古自治區(qū)2023-2024學(xué)年高一下數(shù)學(xué)期末考試試題含解析_第2頁(yè)](http://file4.renrendoc.com/view3/M03/34/32/wKhkFmZmicOATJ4KAAIWhHjqB9I3622.jpg)
![內(nèi)蒙古自治區(qū)2023-2024學(xué)年高一下數(shù)學(xué)期末考試試題含解析_第3頁(yè)](http://file4.renrendoc.com/view3/M03/34/32/wKhkFmZmicOATJ4KAAIWhHjqB9I3623.jpg)
![內(nèi)蒙古自治區(qū)2023-2024學(xué)年高一下數(shù)學(xué)期末考試試題含解析_第4頁(yè)](http://file4.renrendoc.com/view3/M03/34/32/wKhkFmZmicOATJ4KAAIWhHjqB9I3624.jpg)
![內(nèi)蒙古自治區(qū)2023-2024學(xué)年高一下數(shù)學(xué)期末考試試題含解析_第5頁(yè)](http://file4.renrendoc.com/view3/M03/34/32/wKhkFmZmicOATJ4KAAIWhHjqB9I3625.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古自治區(qū)2023-2024學(xué)年高一下數(shù)學(xué)期末考試試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,角,,所對(duì)的邊分別是,,,,,,則()A.或 B.C. D.2.若展開(kāi)式中的系數(shù)為-20,則等于()A.-1 B. C.-2 D.3.已知m,n是兩條不同的直線(xiàn),是三個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則4.給出函數(shù)為常數(shù),且,,無(wú)論a取何值,函數(shù)恒過(guò)定點(diǎn)P,則P的坐標(biāo)是A. B. C. D.5.如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估計(jì)眾數(shù)與中位數(shù)分別是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;136.設(shè),若3是與的等比中項(xiàng),則的最小值為().A. B. C. D.7.已知為等比數(shù)列的前項(xiàng)和,,,則A. B. C. D.118.已知是的共軛復(fù)數(shù),若復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)是()A. B. C. D.9.函數(shù),是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)10.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗(yàn)證n=1成立時(shí),左邊的項(xiàng)是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a4二、填空題:本大題共6小題,每小題5分,共30分。11.若,則的值為_(kāi)______.12.已知,則13.已知數(shù)列,,且,則________.14.把函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,所得圖象正好關(guān)于原點(diǎn)對(duì)稱(chēng),則的最小值為_(kāi)_______.15.設(shè)奇函數(shù)的定義域?yàn)镽,且對(duì)任意實(shí)數(shù)滿(mǎn)足,若當(dāng)∈[0,1]時(shí),,則____.16.已知一個(gè)鐵球的體積為,則該鐵球的表面積為_(kāi)_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知,,(1)若,求;(2)求的最大值,并求出對(duì)應(yīng)的x的值.18.高二數(shù)學(xué)期中測(cè)試中,為了了解學(xué)生的考試情況,從中抽取了個(gè)學(xué)生的成績(jī)(滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出得分在[50,60),[90,100]的數(shù)據(jù)).(1)求樣本容量和頻率分布直方圖中的值;(2)在選取的樣本中,從成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名參加志愿者活動(dòng),所抽取的3名同學(xué)中至少有一名成績(jī)?cè)赱90,100]內(nèi)的概率..19.?dāng)?shù)列中,,(為常數(shù)).(1)若,,成等差數(shù)列,求的值;(2)是否存在,使得為等比數(shù)列?并說(shuō)明理由.20.記Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.(1)求的通項(xiàng)公式;(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列.21.在中,角A,B,C所對(duì)的邊分別為a,b,c.已知,,.(1)求:(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
將已知代入正弦定理可得,根據(jù),由三角形中大邊對(duì)大角可得:,即可求得.【詳解】解:,,由正弦定理得:故選C.【點(diǎn)睛】本題考查了正弦定理、三角形的邊角大小關(guān)系,考查了推理能力與計(jì)算能力.2、A【解析】由,可得將選項(xiàng)中的數(shù)值代入驗(yàn)證可得,符合題意,故選A.3、C【解析】
利用線(xiàn)面垂直、線(xiàn)面平行、面面垂直的性質(zhì)定理分別對(duì)選項(xiàng)分析選擇.【詳解】對(duì)于A,若,,則或者;故A錯(cuò)誤;對(duì)于B,若,則可能在內(nèi)或者平行于;故B錯(cuò)誤;對(duì)于C,若,,,過(guò)分作平面于,作平面,則根據(jù)線(xiàn)面平行的性質(zhì)定理得,,∴,根據(jù)線(xiàn)面平行的判定定理,可得,又,,根據(jù)線(xiàn)面平行的性質(zhì)定理可得,又,∴;故C正確;對(duì)于D.若,,則與可能垂直,如墻角;故D錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查了面面垂直、線(xiàn)面平行、線(xiàn)面垂直的性質(zhì)定理及應(yīng)用,涉及空間線(xiàn)線(xiàn)平行的傳遞性,考查了空間想象能力,熟練運(yùn)用定理是關(guān)鍵.4、D【解析】試題分析:因?yàn)楹氵^(guò)定點(diǎn),所以函數(shù)恒過(guò)定點(diǎn).故選D.考點(diǎn):指數(shù)函數(shù)的性質(zhì).5、D【解析】分析:根據(jù)頻率分布直方圖中眾數(shù)與中位數(shù)的定義和計(jì)算方法,即可求解頻率分布直方圖的眾數(shù)與中位數(shù)的值.詳解:由題意,頻率分布直方圖中最高矩形的底邊的中點(diǎn)的橫坐標(biāo)為數(shù)據(jù)的眾數(shù),所以中間一個(gè)矩形最該,故數(shù)據(jù)的眾數(shù)為,而中位數(shù)是把頻率分布直方圖分成兩個(gè)面積相等部分的平行于軸的直線(xiàn)橫坐標(biāo),第一個(gè)矩形的面積為,第二個(gè)矩形的面積為,故將第二個(gè)矩形分成即可,所以中位數(shù)是,故選D.點(diǎn)睛:本題主要考查了頻率分布直方圖的中位數(shù)與眾數(shù)的求解,其中頻率分布直方圖中小矩形的面積等于對(duì)應(yīng)的概率,且各個(gè)小矩形的面積之和為1是解答的關(guān)鍵,著重考查了推理與計(jì)算能力.6、C【解析】
由3是與的等比中項(xiàng),可得,再利用不等式知識(shí)可得的最小值.【詳解】解:3是與的等比中項(xiàng),,,=,故選C.【點(diǎn)睛】本題考查了指數(shù)式和對(duì)數(shù)式的互化,及均值不等式求最值的運(yùn)用,考查了計(jì)算變通能力.7、C【解析】
由題意易得數(shù)列的公比代入求和公式計(jì)算可得.【詳解】設(shè)等比數(shù)列公比為q,,則,解得,,故選:C.【點(diǎn)睛】本題考查等比數(shù)列的求和公式和通項(xiàng)公式,求出數(shù)列的公比是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.8、A【解析】由,得,所以在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,故選A.9、A【解析】
判斷函數(shù)函數(shù),的奇偶性,求出其周期即可得到結(jié)論.【詳解】設(shè)則故函數(shù)函數(shù),是奇函數(shù),由故函數(shù),是最小正周期為的奇函數(shù).故選A.【點(diǎn)睛】本題考查正弦函數(shù)的奇偶性和周期性,屬基礎(chǔ)題.10、C【解析】
在驗(yàn)證時(shí),左端計(jì)算所得的項(xiàng),把代入等式左邊即可得到答案.【詳解】解:用數(shù)學(xué)歸納法證明,
在驗(yàn)證時(shí),把當(dāng)代入,左端.
故選:C.【點(diǎn)睛】此題主要考查數(shù)學(xué)歸納法證明等式的問(wèn)題,屬于概念性問(wèn)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
把已知等式展開(kāi)利用二倍角余弦公式及兩角和的余弦公式,整理后兩邊平方求解.【詳解】解:由,得,,則,兩邊平方得:,即.故答案為.【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn)求值,考查倍角公式的應(yīng)用,是基礎(chǔ)題.12、28【解析】試題分析:由等差數(shù)列的前n項(xiàng)和公式,把等價(jià)轉(zhuǎn)化為所以,然后求得a值.考點(diǎn):極限及其運(yùn)算13、【解析】
由題意可得{}是以+1為首項(xiàng),以2為公比的等比數(shù)列,再由已知求得首項(xiàng),進(jìn)一步求得即可.【詳解】在數(shù)列中,滿(mǎn)足得,則數(shù)列是以+1為首項(xiàng),以公比為2的等比數(shù)列,得,由,則,得.由,得,故.故答案為:【點(diǎn)睛】本題考查了數(shù)列的遞推式,利用構(gòu)造等比數(shù)列方法求數(shù)列的通項(xiàng)公式,屬于中檔題.14、【解析】
根據(jù)條件先求出平移后的函數(shù)表達(dá)式為,令即可得解.【詳解】由題意可得平移后的函數(shù)表達(dá)式為,圖象正好關(guān)于原點(diǎn)對(duì)稱(chēng),即,又,的最小值為.故答案為:.【點(diǎn)睛】本題考查了函數(shù)圖像的平移以及三角函數(shù)的圖像與性質(zhì),屬于基礎(chǔ)題.15、【解析】
根據(jù)得到周期,再利用周期以及奇函數(shù)將自變量轉(zhuǎn)變到給定區(qū)間計(jì)算函數(shù)值.【詳解】因?yàn)?,所以,所以,又因?yàn)?,所以,則,故,又因?yàn)槭瞧婧瘮?shù),所以,則.【點(diǎn)睛】(1)形如的函數(shù)是周期函數(shù),周期;(2)若要根據(jù)奇偶性求解分段函數(shù)的表達(dá)式,記住一個(gè)原則:“用未知表示已知”,也就是將自變量變形,利用已知范圍和解析式求解.16、.【解析】
通過(guò)球的體積求出球的半徑,然后求出球的表面積.【詳解】球的體積為球的半徑球的表面積為:故答案為:【點(diǎn)睛】本題考查球的表面積與體積的求法,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(II)1,此時(shí)【解析】
(Ⅰ)根據(jù)平面向量的坐標(biāo)運(yùn)算,利用平行公式求出tanx的值;(Ⅱ)利用平面向量的坐標(biāo)運(yùn)算,利用模長(zhǎng)公式和三角函數(shù)求出最大值.【詳解】解:(Ⅰ)計(jì)算-=(3,4),由∥(-)得4cosx-3sinx=0,∴tanx==;(Ⅱ)+=(cosx+1,sinx),∴=(cosx+1)1+sin1x=1+1cosx,|+|=,當(dāng)cosx=1,即x=1kπ,k∈Z時(shí),|+|取得最大值為1.【點(diǎn)睛】本題考查了平面向量的坐標(biāo)運(yùn)算與數(shù)量積運(yùn)算問(wèn)題,是基礎(chǔ)題.18、(1)40,0.025,0.005(2)【解析】試題分析:(Ⅰ)由樣本容量和頻數(shù)頻率的關(guān)系易得答案;(Ⅱ)由題意可知,分?jǐn)?shù)在[80,100)內(nèi)的學(xué)生有6人,分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,結(jié)合古典概型概率公式和對(duì)立事件概率公式可求得至少有一名成績(jī)?cè)赱90,100]內(nèi)的概率試題解析:(1)由題意可知,樣本容量,,.……………6分(2)由題意,分?jǐn)?shù)在內(nèi)的有4人,分?jǐn)?shù)在內(nèi)的有2人,成績(jī)是分以上(含分)的學(xué)生共6人.從而抽取的名同學(xué)中得分在的學(xué)生人數(shù)的所有可能的取值為.,所以所求概率為考點(diǎn):頻率分布直方圖;莖葉圖19、(Ⅰ)p=1;(Ⅱ)存在實(shí)數(shù),使得{an}為等比數(shù)列【解析】
(Ⅰ)由已知求得a1,a4,再由-a1,,a4成等差數(shù)列列式求p的值;(Ⅱ)假設(shè)存在p,使得{an}為等比數(shù)列,可得,求解p值,驗(yàn)證得答案.【詳解】(Ⅰ)由a1=1,,得,,則,,,.由,,a4成等差數(shù)列,得a1=a4-a1,即,解得:p=1;(Ⅱ)假設(shè)存在p,使得{an}為等比數(shù)列,則,即,則1p=p+1,即p=1.此時(shí),,∴,而,又,所以,而,且,∴存在實(shí)數(shù),使得{an}為以1為首項(xiàng),以1為公比的等比數(shù)列.【點(diǎn)睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的性質(zhì),是中檔題.20、(1);(2)見(jiàn)解析.【解析】試題分析:(1)由等比數(shù)列通項(xiàng)公式解得,即可求解;(2)利用等差中項(xiàng)證明Sn+1,Sn,Sn+2成等差數(shù)列.試題解析:(1)設(shè)的公比為.由題設(shè)可得,解得,.故的通項(xiàng)公式為.(2)由(1)可得.由于,故,,成等差數(shù)列.點(diǎn)睛:等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問(wèn)題既快捷又方便的工具,應(yīng)有意識(shí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生命教育在學(xué)生心理健康中的積極作用
- 現(xiàn)代技術(shù)助力老舊小區(qū)火災(zāi)預(yù)防
- 現(xiàn)代產(chǎn)品設(shè)計(jì)中的用戶(hù)參與策略
- 電動(dòng)公交車(chē)安全運(yùn)行技術(shù)保障方案
- 生態(tài)教育培養(yǎng)可持續(xù)發(fā)展意識(shí)的新趨勢(shì)
- 危險(xiǎn)化學(xué)品職業(yè)危害及其預(yù)防考核試卷
- 電子商務(wù)對(duì)辦公模式的影響與挑戰(zhàn)
- 蓋章的委托協(xié)議書(shū)(2篇)
- 摩托車(chē)鏈條張緊器與導(dǎo)鏈器設(shè)計(jì)考核試卷
- 保健品批發(fā)渠道的多元化考核試卷
- 橋梁頂升移位改造技術(shù)規(guī)范
- 浙江省杭州市2022-2023學(xué)年五年級(jí)下學(xué)期數(shù)學(xué)期末試卷(含答案)
- 介紹人提成方案
- 天津在津居住情況承諾書(shū)
- PHOTOSHOP教案 學(xué)習(xí)資料
- 初中數(shù)學(xué)教學(xué)“教-學(xué)-評(píng)”一體化研究
- 2012年安徽高考理綜試卷及答案-文檔
- 《游戲界面設(shè)計(jì)專(zhuān)題實(shí)踐》課件-知識(shí)點(diǎn)5:圖標(biāo)繪制準(zhǔn)備與繪制步驟
- 自動(dòng)扶梯安裝過(guò)程記錄
- 智慧供熱管理系統(tǒng)方案可行性研究報(bào)告
- 帕金森病的言語(yǔ)康復(fù)治療
評(píng)論
0/150
提交評(píng)論