湖北省潛江市重點名校中考試題猜想數(shù)學試卷及答案解析_第1頁
湖北省潛江市重點名校中考試題猜想數(shù)學試卷及答案解析_第2頁
湖北省潛江市重點名校中考試題猜想數(shù)學試卷及答案解析_第3頁
湖北省潛江市重點名校中考試題猜想數(shù)學試卷及答案解析_第4頁
湖北省潛江市重點名校中考試題猜想數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省潛江市重點名校中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a(chǎn)6÷a2=a32.如圖,在平面直角坐標系xOy中,△由△繞點P旋轉(zhuǎn)得到,則點P的坐標為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)3.歐幾里得的《原本》記載,形如的方程的圖解法是:畫,使,,,再在斜邊上截取.則該方程的一個正根是()A.的長 B.的長 C.的長 D.的長4.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小5.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°6.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)7.如圖,桌面上放著1個長方體和1個圓柱體,按如圖所示的方式擺放在一起,其左視圖是()A. B. C. D.8.甲、乙兩名同學在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結(jié)果的實驗可能是()A.擲一枚正六面體的骰子,出現(xiàn)1點的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數(shù),它能被2整除的概率9.下列函數(shù)中,y關(guān)于x的二次函數(shù)是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x210.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形11.如圖所示,點E是正方形ABCD內(nèi)一點,把△BEC繞點C旋轉(zhuǎn)至△DFC位置,則∠EFC的度數(shù)是()A.90° B.30° C.45° D.60°12.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.14.分解因式x2﹣x=_______________________15.某種藥品原來售價100元,連續(xù)兩次降價后售價為81元,若每次下降的百分率相同,則這個百分率是.16.計算的結(jié)果是____.17.如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m.18.某校組織“優(yōu)質(zhì)課大賽”活動,經(jīng)過評比有兩名男教師和兩名女教師獲得一等獎,學校將從這四名教師中隨機挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知的直徑,是的弦,過點作的切線交的延長線于點,過點作,垂足為,與交于點,設(shè),的度數(shù)分別是,,且.(1)用含的代數(shù)式表示;(2)連結(jié)交于點,若,求的長.20.(6分)已知,拋物線(為常數(shù)).(1)拋物線的頂點坐標為(,)(用含的代數(shù)式表示);(2)若拋物線經(jīng)過點且與圖象交點的縱坐標為3,請在圖1中畫出拋物線的簡圖,并求的函數(shù)表達式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標軸,,若拋物線經(jīng)過兩點,且矩形在其對稱軸的左側(cè),則對角線的最小值是.21.(6分)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結(jié)果精確到0.01米)22.(8分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.求雙曲線的解析式;求點C的坐標,并直接寫出y1<y2時x的取值范圍.23.(8分)將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.從中隨機抽出一張牌,牌面數(shù)字是偶數(shù)的概率是_____;先從中隨機抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機抽取一張,將牌面數(shù)字作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.24.(10分)某省為解決農(nóng)村飲用水問題,省財政部門共投資20億元對各市的農(nóng)村飲用水的“改水工程”予以一定比例的補助.2008年,A市在省財政補助的基礎(chǔ)上投入600萬元用于“改水工程”,計劃以后每年以相同的增長率投資,2010年該市計劃投資“改水工程”1176萬元.求A市投資“改水工程”的年平均增長率;從2008年到2010年,A市三年共投資“改水工程”多少萬元?25.(10分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大?。?)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小26.(12分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)27.(12分)我市某學校在“行讀石鼓閣”研學活動中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標.建筑面積7200平方米,為我國西北第一高閣.秦漢高臺門闕的建筑風格,追求穩(wěn)定之中的飛揚靈動,深厚之中的巧妙組合,使景觀功能和標志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學李梅對石鼓閣進行測量.測量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應(yīng)位置為點C,鏡子不動,李梅看著鏡面上的標記,她來回走動,走到點D時,看到“石鼓閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點沿DM方向走了29.4米,此時“石鼓閣”影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關(guān)信息,求出“石鼓閣”的高AB的長度.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】選項A,原式=-16;選項B,不能夠合并;選項C,原式=9b2;選項D,原式=2、B【解析】試題分析:根據(jù)網(wǎng)格結(jié)構(gòu),找出對應(yīng)點連線的垂直平分線的交點即為旋轉(zhuǎn)中心.試題解析:由圖形可知,對應(yīng)點的連線CC′、AA′的垂直平分線過點(0,-1),根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(1,-1)即為旋轉(zhuǎn)中心.故旋轉(zhuǎn)中心坐標是P(1,-1)故選B.考點:坐標與圖形變化—旋轉(zhuǎn).3、B【解析】【分析】可以利用求根公式求出方程的根,根據(jù)勾股定理求出AB的長,進而求得AD的長,即可發(fā)現(xiàn)結(jié)論.【解答】用求根公式求得:∵∴∴AD的長就是方程的正根.故選B.【點評】考查解一元二次方程已經(jīng)勾股定理等,熟練掌握公式法解一元二次方程是解題的關(guān)鍵.4、D【解析】

根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.5、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.6、A【解析】

首先根據(jù)各選項棋子的位置,進而結(jié)合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關(guān)鍵.7、C【解析】

根據(jù)左視圖是從左面看所得到的圖形進行解答即可.【詳解】從左邊看時,圓柱和長方體都是一個矩形,圓柱的矩形豎放在長方體矩形的中間.故選:C.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.8、C【解析】解:A.擲一枚正六面體的骰子,出現(xiàn)1點的概率為,故此選項錯誤;B.擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數(shù),能被2整除的概率為,故此選項錯誤.故選C.9、B【解析】

判斷一個函數(shù)是不是二次函數(shù),在關(guān)系式是整式的前提下,如果把關(guān)系式化簡整理(去括號、合并同類項)后,能寫成y=ax2+bx+c(a,b,c為常數(shù),a≠0)的形式,那么這個函數(shù)就是二次函數(shù),否則就不是.【詳解】A.當a=0時,y=ax2+bx+c=bx+c,不是二次函數(shù),故不符合題意;B.y=x(x﹣1)=x2-x,是二次函數(shù),故符合題意;C.的自變量在分母中,不是二次函數(shù),故不符合題意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函數(shù),故不符合題意;故選B.【點睛】本題考查了二次函數(shù)的定義,一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做二次函數(shù),據(jù)此求解即可.10、B【解析】

根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;

C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.11、C【解析】

根據(jù)正方形的每一個角都是直角可得∠BCD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉(zhuǎn)至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點睛】本題目是一道考查旋轉(zhuǎn)的性質(zhì)問題——每對對應(yīng)點到旋轉(zhuǎn)中心的連線的夾角都等于旋轉(zhuǎn)角度,每對對應(yīng)邊相等,故為等腰直角三角形.12、A【解析】試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了勾股定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(-)cm2【解析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.14、x(x-1)【解析】x2﹣x=x(x-1).故答案是:x(x-1).15、10%.【解析】

設(shè)平均每次降價的百分率為,那么第一次降價后的售價是原來的,那么第二次降價后的售價是原來的,根據(jù)題意列方程解答即可.【詳解】設(shè)平均每次降價的百分率為,根據(jù)題意列方程得,,解得,(不符合題意,舍去),答:這個百分率是.故答案為.【點睛】本題考查一元二次方程的應(yīng)用,要掌握求平均變化率的方法.若設(shè)變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關(guān)系為.16、【解析】原式=,故答案為.17、1.【解析】

根據(jù)已知建立平面直角坐標系,進而求出二次函數(shù)解析式,再通過把y=-1.5代入拋物線解析式得出水面寬度,即可得出答案【詳解】解:建立平面直角坐標系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,

拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半1米,拋物線頂點C坐標為(0,1),

設(shè)頂點式y(tǒng)=ax1+1,把A點坐標(-1,0)代入得a=-0.5,

∴拋物線解析式為y=-0.5x1+1,

當水面下降1.5米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:

當y=-1.5時,對應(yīng)的拋物線上兩點之間的距離,也就是直線y=-1與拋物線相交的兩點之間的距離,

可以通過把y=-1.5代入拋物線解析式得出:

-1.5=-0.5x1+1,

解得:x=±3,

1×3-4=1,

所以水面下降1.5m,水面寬度增加1米.

故答案為1.【點睛】本題考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵,學會把實際問題轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題,屬于中考常考題型.18、【解析】

根據(jù)列表法求出所有可能及可得出挑選的兩位教師恰好是一男一女的結(jié)果數(shù)而利用概率公式計算可得.【詳解】解:所有可能的結(jié)果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同.挑選的兩位教師恰好是一男一女的結(jié)果有8種,所以其概率為挑選的兩位教師恰好是一男一女的概率為=,故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)【解析】

(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥DE,可以證明AD∥OC,根據(jù)平行線的性質(zhì)可得,則根據(jù)等腰三角形的性質(zhì)可得,利用,化簡計算即可得到答案;

(2)連接CF,根據(jù),可得,利用中垂線和等腰三角形的性質(zhì)可證四邊形是平行四邊形,得到△AOF為等邊三角形,由并可得四邊形是菱形,可證是等邊三角形,有∠FAO=60°,再根據(jù)弧長公式計算即可.【詳解】解:(1)如圖示,連結(jié),∵是的切線,∴.又,∴,∴,∴.∵,∴.∴.∵,∴.∴,即.(2)如圖示,連結(jié),∵,,∴,∴,∴,∴,∵,∴四邊形是平行四邊形,∵,∴四邊形是菱形,∴,∴是等邊三角形,∴,∴,∵,∴的長.【點睛】本題考查的是切線的性質(zhì)、菱形的判定和性質(zhì)、弧長的計算,掌握切線的性質(zhì)定理、弧長公式是解題的關(guān)鍵.20、(1);(2)圖象見解析,或;(3)【解析】

(1)將拋物線的解析式配成頂點式,即可得出頂點坐標;(2)根據(jù)拋物線經(jīng)過點M,用待定系數(shù)法求出拋物線的解析式,即可得出圖象,然后將縱坐標3代入拋物線的解析式中,求出橫坐標,然后將點再代入反比例函數(shù)的表達式中即可求出反比例函數(shù)的表示式;(3)設(shè)出A的坐標,表示出C,D的坐標,得到CD的長度,根據(jù)題意找到CD的最小值,因為AD的長度不變,所以當CD最小時,對角線AC最小,則答案可求.【詳解】解:(1),拋物線的頂點的坐標為.故答案為:(2)將代入拋物線的解析式得:解得:,拋物線的解析式為.拋物線的大致圖象如圖所示:將代入得:,解得:或拋物線與反比例函數(shù)圖象的交點坐標為或.將代入得:,.將代入得:,.綜上所述,反比例函數(shù)的表達式為或.(3)設(shè)點的坐標為,則點的坐標為,的坐標為.的長隨的增大而減?。匦卧谄鋵ΨQ軸的左側(cè),拋物線的對稱軸為,當時,的長有最小值,的最小值.的長度不變,當最小時,有最小值.的最小值故答案為:.【點睛】本題主要考查二次函數(shù),反比例函數(shù)與幾何綜合,掌握二次函數(shù),反比例函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.21、AD=38.28米.【解析】

過點B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【詳解】過點B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【點睛】解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.22、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據(jù)等腰直角三角形的性質(zhì)和點A的坐標的特點得:x=1x﹣1,可得A的坐標,從而得雙曲線的解析式;(1)聯(lián)立一次函數(shù)和反比例函數(shù)解析式得方程組,解方程組可得點C的坐標,根據(jù)圖象可得結(jié)論.【詳解】(1)∵點A在直線y1=1x﹣1上,∴設(shè)A(x,1x﹣1),過A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由圖象得:y1<y1時x的取值范圍是x<﹣1或0<x<1.【點睛】本題考查了反比例函數(shù)和一次函數(shù)的綜合;熟練掌握通過求點的坐標進一步求函數(shù)解析式的方法;通過觀察圖象,從交點看起,函數(shù)圖象在上方的函數(shù)值大.23、(1)12;(2)1【解析】

(1)直接利用概率公式求解即可;(2)依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率即可.【詳解】(1)從中隨機抽出一張牌,牌面所有可能出現(xiàn)的結(jié)果有4種,且它們出現(xiàn)的可能性相等,其中出現(xiàn)偶數(shù)的情況有2種,∴P(牌面是偶數(shù))=24=1故答案為:12(2)根據(jù)題意,畫樹狀圖:可知,共有16種等可能的結(jié)果,其中恰好是4的倍數(shù)的共有4種,∴【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)40%;(2)2616.【解析】

(1)設(shè)A市投資“改水工程”的年平均增長率是x.根據(jù):2008年,A市投入600萬元用于“改水工程”,2010年該市計劃投資“改水工程”1176萬元,列方程求解;(2)根據(jù)(1)中求得的增長率,分別求得2009年和2010年的投資,最后求和即可.【詳解】解:(1)設(shè)A市投資“改水工程”年平均增長率是x,則.解之,得或(不合題意,舍去).所以,A市投資“改水工程”年平均增長率為40%.(2)600+600×1.4+1176=2616(萬元).A市三年共投資“改水工程”2616萬元.25、(1)∠P=50°;(2)∠P=45°.【解析】

(1)連接OB,根據(jù)切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據(jù)三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論