四川省德陽市什邡中學(xué)2024屆高一下數(shù)學(xué)期末預(yù)測試題含解析_第1頁
四川省德陽市什邡中學(xué)2024屆高一下數(shù)學(xué)期末預(yù)測試題含解析_第2頁
四川省德陽市什邡中學(xué)2024屆高一下數(shù)學(xué)期末預(yù)測試題含解析_第3頁
四川省德陽市什邡中學(xué)2024屆高一下數(shù)學(xué)期末預(yù)測試題含解析_第4頁
四川省德陽市什邡中學(xué)2024屆高一下數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省德陽市什邡中學(xué)2024屆高一下數(shù)學(xué)期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.一個幾何體的三視圖如圖所示,則這個幾何的體積為()立方單位.A. B.C. D.2.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.3.圓關(guān)于原點(diǎn)對稱的圓的方程為()A. B.C. D.4.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AE與BF所成角的余弦值為()A. B. C. D.5.在面積為S的平行四邊形ABCD內(nèi)任取一點(diǎn)P,則三角形PBD的面積大于的概率為()A. B. C. D.6.如圖,,下列等式中成立的是()A. B.C. D.7.已知函數(shù),若,則()A. B. C. D.8.設(shè)是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.在ΔABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知A=60°,a=43,A.30° B.45° C.6010.“”是“函數(shù),有反函數(shù)”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.即非充分又非必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在中,,是邊上一點(diǎn),,則.12.函數(shù)y=sin2x+2sin2x的最小正周期T為_______.13.已知函數(shù)是定義域?yàn)榈呐己瘮?shù).當(dāng)時,,關(guān)于的方程,有且僅有5個不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_____.14.一水平位置的平面圖形的斜二測直觀圖是一個底平行于軸,底角為,兩腰和上底長均為1的等腰梯形,則這個平面圖形的面積是.15.在數(shù)列中,若,(),則________16.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最大值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.等差數(shù)列的各項(xiàng)均為正數(shù),,的前項(xiàng)和為,為等比數(shù)列,,且.(1)求與;(2)求數(shù)列的前項(xiàng)和.18.已知數(shù)列滿足,.(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.19.已知是的內(nèi)角,分別是角的對邊.若,(1)求角的大小;(2)若,的面積為,為的中點(diǎn),求20.在等比數(shù)列中,,.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.21.在平面直角坐標(biāo)系中,已知曲線的方程是(,).(1)當(dāng),時,求曲線圍成的區(qū)域的面積;(2)若直線:與曲線交于軸上方的兩點(diǎn),,且,求點(diǎn)到直線距離的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】由三視圖可知幾何體是由一個四棱錐和半個圓柱組合而成的,所以所求的體積為,故選D.2、D【解析】

不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變,可判定A的真假;a>b,-1>-2,根據(jù)同向不等式可以相加,可判定B的真假;根據(jù)a-b>0則b-a<0,進(jìn)行判定C的真假;a的符號不確定,從而選項(xiàng)D不一定成立,從而得到結(jié)論.【詳解】∵a,b∈R,并且a>b,∴?a<?b,故A一定正確;a>b,?1>?2,根據(jù)同向不等式可以相加得,a?1>b?2,故B一定正確;a?b>0則b?a<0,所以a?b>b?a,故C一定正確;不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變,不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變,而a的符號不確定,故D不一定正確.故選D.【點(diǎn)睛】本題主要考查利用不等式的性質(zhì)判斷不等關(guān)系,屬于基礎(chǔ)題.3、D【解析】

根據(jù)已知圓的方程可得其圓心,進(jìn)而可求得其關(guān)于原點(diǎn)對稱點(diǎn),利用圓的標(biāo)準(zhǔn)方程即可求解.【詳解】由圓,則圓心為,半徑,圓心為關(guān)于原點(diǎn)對稱點(diǎn)為,所以圓關(guān)于原點(diǎn)對稱的圓的方程為.故選:D【點(diǎn)睛】本題考查了根據(jù)圓心與半徑求圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.4、D【解析】

以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,再利用向量法求出異面直線AE與BF所成角的余弦值.【詳解】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1中棱長為2,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),A(2,0,0),E(0,1,2),B(2,2,0),F(xiàn)(0,2,1),=(﹣2,1,2),=(﹣2,0,1),設(shè)異面直線AE與BF所成角的平面角為θ,則cosθ===,∴異面直線AE與BF所成角的余弦值為.故選D.【點(diǎn)睛】本題考查異面直線所成角的余弦值的求法,注意向量法的合理運(yùn)用,屬于基礎(chǔ)題.5、A【解析】

轉(zhuǎn)化條件求出滿足要求的P點(diǎn)的范圍,求出面積比即可得解.【詳解】如圖,設(shè)P到BD距離為h,A到BD距離為H,則,,滿足條件的點(diǎn)在和中,所求概率.故選:A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算,屬于基礎(chǔ)題.6、B【解析】

本題首先可結(jié)合向量減法的三角形法則對已知條件中的進(jìn)行化簡,化簡為然后化簡并代入即可得出答案.【詳解】因?yàn)椋?,所以,即,故選B.【點(diǎn)睛】本題考查的知識點(diǎn)是平面向量的基本定理,考查向量減法的三角形法則,考查數(shù)形結(jié)合思想與化歸思想,是簡單題.7、D【解析】

令,根據(jù)奇偶性定義可判斷出為奇函數(shù),從而可求得,進(jìn)而求得結(jié)果.【詳解】令為奇函數(shù)又即本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性求解函數(shù)值的問題,關(guān)鍵是能夠通過構(gòu)造函數(shù)的方式得到奇函數(shù),利用奇函數(shù)的定義可求得對應(yīng)位置的函數(shù)值.8、C【解析】

在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,是中檔題.9、A【解析】

根據(jù)正弦定理求得sinB,根據(jù)大邊對大角的原則可求得B【詳解】由正弦定理asinA∵b<a∴B<A∴B=本題正確選項(xiàng):A【點(diǎn)睛】本題考查正弦定理解三角形,易錯點(diǎn)是忽略大邊對大角的特點(diǎn),屬于基礎(chǔ)題.10、A【解析】

函數(shù),有反函數(shù),則函數(shù),上具有單調(diào)性,可得,即可判斷出結(jié)論.【詳解】函數(shù),有反函數(shù),則函數(shù),上具有單調(diào)性,.是的真子集,“”是“函數(shù),有反函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了二次函數(shù)的單調(diào)性、反函數(shù)、充分條件與必要條件的判定方法,考查推理能力與計(jì)算能力,同時考查函數(shù)與方程思想、數(shù)形結(jié)合思想.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由圖及題意得

=

=(

)(

)=

+

=

=

.12、【解析】考點(diǎn):此題主要考查三角函數(shù)的概念、化簡、性質(zhì),考查運(yùn)算能力.13、.【解析】

令,則原方程為,根據(jù)原方程有且僅有5個不同實(shí)數(shù)根,則有5個不同的解,結(jié)合圖像特征,求出的值或范圍,即為方程解的值或范圍,轉(zhuǎn)化為范圍,即可求解.【詳解】令,則原方程為,當(dāng)時,,且為偶函數(shù),做出圖像,如下圖所示:當(dāng)時,有一個解;當(dāng)或,有兩個解;當(dāng)時,有四個解;當(dāng)或時,無解.,有且僅有5個不同實(shí)數(shù)根,關(guān)于的方程有一個解為,,另一個解為,在區(qū)間上,所以,實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查復(fù)合方程根的個數(shù)求參數(shù)范圍,考查了分段函數(shù)的應(yīng)用,利用換元法結(jié)合的函數(shù)的奇偶性的對稱性,利用數(shù)形結(jié)合是解題的關(guān)鍵,屬于難題.14、【解析】如圖過點(diǎn)作,,則四邊形是一個內(nèi)角為45°的平行四邊形且,中,,則對應(yīng)可得四邊形是矩形且,是直角三角形,.所以15、【解析】

由題意,得到數(shù)列表示首項(xiàng)為1,公差為2的等差數(shù)列,結(jié)合等差數(shù)列的通項(xiàng)公式,即可求解.【詳解】由題意,數(shù)列中,滿足,(),即(),所以數(shù)列表示首項(xiàng)為1,公差為2的等差數(shù)列,所以.故答案為:【點(diǎn)睛】本題主要考查了等差數(shù)列的定義和通項(xiàng)公式的應(yīng)用,其中解答中熟記等差數(shù)列的定義,合理利用數(shù)列的通項(xiàng)公式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、7【解析】

首先畫出可行域,然后判斷目標(biāo)函數(shù)的最優(yōu)解,從而求出目標(biāo)函數(shù)的最大值.【詳解】如圖,畫出可行域,作出初始目標(biāo)函數(shù),平移目標(biāo)函數(shù),當(dāng)目標(biāo)函數(shù)過點(diǎn)時,目標(biāo)函數(shù)取得最大值,,解得,.故填:7.【點(diǎn)睛】本題考查了線性規(guī)劃問題,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】試題分析:(1)的公差為,的公比為,利用等比數(shù)列的通項(xiàng)公式和等差數(shù)列的前項(xiàng)和公式,由列出關(guān)于的方程組,解出的值,從而得到與的表達(dá)式.(2)根據(jù)數(shù)列的特點(diǎn),可用錯位相減法求它的前項(xiàng)和,由(1)的結(jié)果知,兩邊同乘以2得由(1)(2)兩式兩邊分別相減,可轉(zhuǎn)化為等比數(shù)列的求和問題解決.試題解析:(1)設(shè)的公差為,的公比為,則為正整數(shù),,依題意有,即,解得或者(舍去),故.4分(2).6分,,兩式相減得8分,所以12分考點(diǎn):1、等差數(shù)列和等比數(shù)列;2、錯位相減法求特?cái)?shù)列的前項(xiàng)和.18、(1);(2)【解析】

(1)由知:,利用等比數(shù)列的通項(xiàng)公式即可得出;(2)bn=|11﹣2n|,設(shè)數(shù)列{11﹣2n}的前n項(xiàng)和為Tn,則.當(dāng)n≤5時,Sn=Tn;當(dāng)n≥6時,Sn=2S5﹣Tn.【詳解】(1)證明:由知,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.則,.(2),設(shè)數(shù)列前項(xiàng)和為,則,當(dāng)時,;當(dāng)時,;所以.【點(diǎn)睛】本題考查了等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.19、(1)(2)【解析】

(1)由,可將,轉(zhuǎn)化為,,代入原式,根據(jù)正弦定理可得,結(jié)合余弦定理,及,可得角C的大小。(2)因?yàn)?,所以。所以為等腰三角形,根?jù)面積為,可得,在,,,,結(jié)合余弦定理,即可求解?!驹斀狻浚?)由得由正弦定理,得,即所以又,則(2)因?yàn)椋?所以為等腰三角形,且頂角.因?yàn)樗?在中,,,,所以解得.【點(diǎn)睛】本題考查同角三角函數(shù)的基本關(guān)系,正弦定理,余弦定理,求面積公式,綜合性較強(qiáng),考查學(xué)生分析推理,計(jì)算化簡的能力,屬基礎(chǔ)題。20、(1);(2).【解析】

(1)設(shè)出通項(xiàng)公式,利用待定系數(shù)法即得結(jié)果;(2)先求出通項(xiàng),利用錯位相減法可以得到前項(xiàng)和.【詳解】(1)因?yàn)椋?,所以,解得故的通?xiàng)公式為.(2)由(1)可得,則,①,②①-②得故.【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)公式,錯位相減法求和,意在考查學(xué)生的分析能力及計(jì)算能力,難度中等.21、(1)4;(2).【解析】

(1)當(dāng),時,曲線的方程是,對絕對值內(nèi)的數(shù)進(jìn)行討論,得到四條直線圍成一個菱形,并求出面積為4;(2)對進(jìn)行討論,化簡曲線方程,并與直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論