黑龍江省哈爾濱市第十九中學(xué)2024屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁
黑龍江省哈爾濱市第十九中學(xué)2024屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁
黑龍江省哈爾濱市第十九中學(xué)2024屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁
黑龍江省哈爾濱市第十九中學(xué)2024屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁
黑龍江省哈爾濱市第十九中學(xué)2024屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省哈爾濱市第十九中學(xué)2024屆高一下數(shù)學(xué)期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在中,面,,是的中點,則圖中直角三角形的個數(shù)是()A.5 B.6 C.7 D.82.下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的平面幾何圖形.此圖由兩個圓構(gòu)成,O為大圓圓心,線段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I,黑色月牙部分記為Ⅱ,兩小月牙之和(斜線部分)部分記為Ⅲ.在整個圖形中隨機取一點,此點取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則()A. B. C. D.3.若是異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交4.若圓上至少有三個不同的點到直線的距離為,則直線的斜率的取值范圍是()A. B.C. D.5.已知兩個球的表面積之比為,則這兩個球的體積之比為()A. B. C. D.6.在一次隨機試驗中,彼此互斥的事件A,B,C,D的概率分別是0.1,0.2,0.3,0.4,則下列說法正確的是A.A+B與C是互斥事件,也是對立事件 B.B+C與D不是互斥事件,但是對立事件C.A+C與B+D是互斥事件,但不是對立事件 D.B+C+D與A是互斥事件,也是對立事件7.已知是等差數(shù)列,其中,,則公差()A. B. C. D.8.把函數(shù)的圖像上所有的點向左平行移動個單位長度,再把所得圖像上所有點的橫坐標縮短到原來的(縱坐標不變),得到的圖像所表示的函數(shù)是()A. B.C. D.9.如圖,正四棱柱中(底面是正方形,側(cè)棱垂直于底面),,則異面直線與所成角的余弦值為()A. B. C. D.10.已知函數(shù)的圖像如圖所示,關(guān)于有以下5個結(jié)論:(1);(2),;(3)將圖像上所有點向右平移個單位得到的圖形所對應(yīng)的函數(shù)是偶函數(shù);(4)對于任意實數(shù)x都有;(5)對于任意實數(shù)x都有;其中所有正確結(jié)論的編號是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)二、填空題:本大題共6小題,每小題5分,共30分。11.與終邊相同的最小正角是______.12.(理)已知函數(shù),若對恒成立,則的取值范圍為.13.設(shè),,則______.14.已知圓錐的母線長為1,側(cè)面展開圖的圓心角為,則該圓錐的體積是______.15.若直線與直線平行,則實數(shù)a的值是________.16.已知等比數(shù)列中,,,若數(shù)列滿足,則數(shù)列的前項和=________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,且向量與的夾角為.(1)若,求;(2)若與垂直,求.18.我市某商場銷售小飾品,已知小飾品的進價是每件3元,且日均銷售量件與銷售單價元可以用這一函數(shù)模型近似刻畫.當銷售單價為4元時,日均銷售量為400件,當銷售單價為8元時,日均銷售量為240件.試求出該小飾品的日均銷售利潤的最大值及此時的銷售單價.19.已知直線:在軸上的截距為,在軸上的截距為.(1)求實數(shù),的值;(2)求點到直線的距離.20.數(shù)列中,,(為常數(shù),1,2,3,…),且.(1)求c的值;(2)求證:①;②;(3)比較++…+與的大小,并加以證明.21.已知數(shù)列前n項和滿足(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:因為面,所以,則三角形為直角三角形,因為,所以,所以三角形是直角三角形,易證,所以面,即,則三角形為直角三角形,即共有7個直角三角形;故選C.考點:空間中垂直關(guān)系的轉(zhuǎn)化.2、D【解析】

設(shè)OA=1,則AB,分別求出三個區(qū)域的面積,由測度比是面積比得答案.【詳解】設(shè)OA=1,則AB,,以AB中點為圓心的半圓的面積為,以O(shè)為圓心的大圓面積的四分之一為,以AB為弦的大圓的劣弧所對弓形的面積為π﹣1,黑色月牙部分的面積為π﹣(π﹣1)=1,圖Ⅲ部分的面積為π﹣1.設(shè)整個圖形的面積為S,則p1,p1,p3.∴p1=p1>p3,故選D.【點睛】本題考查幾何概型概率的求法,考查數(shù)形結(jié)合的解題思想方法,正確求出各部分面積是關(guān)鍵,是中檔題.3、D【解析】

若為異面直線,且直線,則與可能相交,也可能異面,但是與不能平行,若,則,與已知矛盾,選項、、不正確故選.4、C【解析】

作出圖形,設(shè)圓心到直線的距離為,利用數(shù)形結(jié)合思想可知,并設(shè)直線的方程為,利用點到直線的距離公式可得出關(guān)于的不等式,解出即可.【詳解】如下圖所示:設(shè)直線的斜率為,則直線的方程可表示為,即,圓心為,半徑為,由于圓上至少有三個不同的點到直線的距離為,所以,即,即,整理得,解得,因此,直線的斜率的取值范圍是.故選:C.【點睛】本題考查直線與圓的綜合問題,解題的關(guān)鍵就是確定圓心到直線距離所滿足的不等式,并結(jié)合點到直線的距離公式來求解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.5、D【解析】

根據(jù)兩個球的表面積之比求出半徑之比,利用半徑之比求出球的體積比.【詳解】由題知,則.故選:D.【點睛】本題主要考查了球體的表面積公式和體積公式,屬于基礎(chǔ)題.6、D【解析】

不可能同時發(fā)生的事件為互斥事件,當兩個互斥事件的概率和為1,則兩個事件為對立事件,易得答案.【詳解】因為事件彼此互斥,所以與是互斥事件,因為,,,所以與是對立事件,故選D.【點睛】本題考查互斥事件、對立事件的概念,注意對立事件一定是互斥事件,而互斥事件不一定是對立事件.7、D【解析】

根據(jù)等差數(shù)列通項公式即可構(gòu)造方程求得結(jié)果.【詳解】故選:【點睛】本題考查等差數(shù)列基本量的計算,關(guān)鍵是熟練應(yīng)用等差數(shù)列通項公式,屬于基礎(chǔ)題.8、C【解析】

根據(jù)左右平移和周期變換原則變換即可得到結(jié)果.【詳解】向左平移個單位得:將橫坐標縮短為原來的得:本題正確選項:【點睛】本題考查三角函數(shù)的左右平移變換和周期變換的問題,屬于基礎(chǔ)題.9、A【解析】

試題分析:連結(jié),異面直線所成角為,設(shè),在中考點:異面直線所成角10、B【解析】

由圖象可觀察出的最值和周期,從而求出,將圖像上所有的點向右平移個單位得到的函數(shù),可判斷(3)的正誤,利用,可判斷(4)(5)的正誤.【詳解】由圖可知:,所以,,所以,即因為,所以,所以,故(1)(2)正確將圖像上所有的點向右平移個單位得到的函數(shù)為此函數(shù)是奇函數(shù),故(3)錯誤因為所以關(guān)于直線對稱,即有故(4)正確因為所以關(guān)于點對稱,即有故(5)正確綜上可知:正確的有(1)(2)(4)(5)故選:B【點睛】本題考查的是三角函數(shù)的圖象及其性質(zhì),屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)終邊相同的角的定義以及最小正角的要求,可確定結(jié)果.【詳解】因為,所以與終邊相同的最小正角是.故答案為:.【點睛】本題主要考查終邊相同的角,屬于基礎(chǔ)題.12、【解析】試題分析:函數(shù)要使對恒成立,只要小于或等于的最小值即可,的最小值是0,即只需滿足,解得.考點:恒成立問題.13、【解析】

由,根據(jù)兩角差的正切公式可解得.【詳解】,故答案為【點睛】本題主要考查了兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)知識的考查.14、【解析】

根據(jù)題意得,解得,求得圓錐的高,利用體積公式,即可求解.【詳解】設(shè)圓錐底面的半徑為,根據(jù)題意得,解得,所以圓錐的高,所以圓錐的體積.【點睛】本題主要考查了圓錐的體積的計算,以及圓錐的側(cè)面展開圖的應(yīng)用,其中解答中根據(jù)圓錐的側(cè)面展開圖,求得圓錐的底面圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、0【解析】

解方程即得解.【詳解】因為直線與直線平行,所以,所以或.當時,兩直線重合,所以舍去.當時,兩直線平行,滿足題意.故答案為:【點睛】本題主要考查兩直線平行的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.16、【解析】試題分析:根據(jù)題意,由于等比數(shù)列中,,,則可知公比為,那么可知等比數(shù)列中,,,故可知,那么可知數(shù)列的前項和=1=,故可知答案為.考點:等比數(shù)列點評:主要是考查了等比數(shù)列的通項公式以及數(shù)列的求和的運用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)平面向量的數(shù)量積公式計算的值;(2)根據(jù)兩向量垂直數(shù)量積為0,列方程求出cosθ的值和對應(yīng)角θ的值.【詳解】(1)因為,所以(2)因為與垂直,所以即,所以又,所以【點睛】本題考查了平面向量的數(shù)量積與模長和夾角的計算問題,是基礎(chǔ)題.18、當該小飾品銷售單價定位8.5元時,日均銷售利潤的最大,為1210元.【解析】

根據(jù)已知條件,求出,利潤,轉(zhuǎn)化為求二次函數(shù)的最大值,即可求解.【詳解】解:由題意,得解得所以日均銷售量件與銷售單價元的函數(shù)關(guān)系為.日均銷售利潤.當,即時,.所以當該小飾品銷售單價定位8.5元時,日均銷售利潤的最大,為1210元.【點睛】本題考查函數(shù)實際應(yīng)用問題,確定函數(shù)解析式是關(guān)鍵,考查二次函數(shù)的最值,屬于基礎(chǔ)題19、(1),.(2).【解析】分析:(1)在直線方程中,令可得在軸上的截距,令可得軸上的截距.(2)由(1)可得點的坐標,然后根據(jù)點到直線的距離公式可得結(jié)果.詳解:(1)在方程中,令,得,所以;令,得,所以.(2)由(1)得點即為,所以點到直線的距離為.點睛:直線在坐標軸上的“截距”不是“距離”,截距是直線與坐標軸交點的坐標,故截距可為負值、零或為正值.求直線在軸(軸)上的截距時,只需令直線方程中的或等于零即可.20、(1);(2)①見證明;②見證明;(3)++…+,證明見解析【解析】

(1)將代入,結(jié)合可求出的值;(2)可知,,即可證明結(jié)論;(3)由題意可得,從而可得到,求和可得,然后作差,通過討論可比較二者大小.【詳解】(1)由題意:,.而,得,即,解得或,因為,所以滿足題意.(2)因為,所以.則.,因為,,所以,所以.(3)由,可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論