版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西省汾陽市第二高級中學(xué)、文水縣第二高級中學(xué)2025屆高一下數(shù)學(xué)期末監(jiān)測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù),則下列說法正確的是()A.圖像的對稱中心是B.在定義域內(nèi)是增函數(shù)C.是奇函數(shù)D.圖像的對稱軸是2.已知一個幾何體是由半徑為2的球挖去一個三棱錐得到(三棱錐的頂點(diǎn)均在球面上).若該幾何體的三視圖如圖所示(側(cè)視圖中的四邊形為菱形),則該三棱錐的體積為()A. B. C. D.3.已知數(shù)列滿足,為其前項(xiàng)和,則不等式的的最大值為()A.7 B.8 C.9 D.104.設(shè)實(shí)數(shù)滿足約束條件,則的最大值為()A. B.9 C.11 D.5.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積(弦矢+矢).弧田,由圓弧和其所對弦所圍成.公式中“弦”指圓弧所對的弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,弦長等于的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計算所得弧田面積為()A. B. C. D.6.截一個幾何體,各個截面都是圓面,則這個幾何體一定是()A.圓柱 B.圓錐 C.球 D.圓臺7.在正項(xiàng)等比數(shù)列中,,數(shù)列的前項(xiàng)之和為()A. B. C. D.8.設(shè),則下列結(jié)論正確的是()A. B. C. D.9.對一切實(shí)數(shù),不等式恒成立.則的取值范圍是()A. B.C. D.10.已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.49二、填空題:本大題共6小題,每小題5分,共30分。11.項(xiàng)數(shù)為的等差數(shù)列,若奇數(shù)項(xiàng)之和為88,偶數(shù)項(xiàng)之和為77,則實(shí)數(shù)的值為_____.12.記Sn為等比數(shù)列{an}的前n項(xiàng)和.若,則S5=____________.13.過點(diǎn)且在坐標(biāo)軸上的截距相等的直線的一般式方程是________.14.設(shè)三棱錐滿足,,則該三棱錐的體積的最大值為____________.15.一個等腰三角形的頂點(diǎn),一底角頂點(diǎn),另一頂點(diǎn)的軌跡方程是___16.圓上的點(diǎn)到直線的距離的最小值是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.?dāng)?shù)列的前項(xiàng)和.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和,并求使成立的實(shí)數(shù)最小值.18.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點(diǎn)分別為F1,F(xiàn)2,離心率為12,過F1的直線l(1)求橢圓C的方程;(2)若直線y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.19.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點(diǎn).(1)證明:;(2)若為上的動點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值.20.在中,已知,,且AC邊的中點(diǎn)M在y軸上,BC邊的中點(diǎn)N在x軸上,求:頂點(diǎn)C的坐標(biāo);
直線MN的方程.21.設(shè)函數(shù)(1)若對于一切實(shí)數(shù)恒成立,求的取值范圍;(2)若對于恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
根據(jù)正切函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】.,由得,,的對稱中心為,,故正確;.在定義域內(nèi)不是增函數(shù),故錯誤;.為非奇非偶函數(shù),故錯誤;.的圖象不是軸對稱圖形,故錯誤.故選.【點(diǎn)睛】本題考查了正切函數(shù)的圖象與性質(zhì),考查了整體思想,意在考查學(xué)生對這些知識的理解掌握水平,屬基礎(chǔ)題.2、C【解析】由三視圖可知,三棱錐的體積為3、B【解析】
由題意,整理得出是一個首項(xiàng)為12,公比為的等比數(shù)列,從而求出,再求出其前項(xiàng)和,然后再求出的表達(dá)式,再代入數(shù)驗(yàn)證出的最大值即可.【詳解】由可得,即,所以數(shù)列是等比數(shù)列,又,所以,故,解得,(),所以的最大值為8.選B.【點(diǎn)睛】本題考查數(shù)列的遞推式以及數(shù)列求和的方法分組求和,屬于數(shù)列中的綜合題,考查了轉(zhuǎn)化的思想,構(gòu)造的意識,本題難度較大,思維能力要求高.4、C【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】作出約束條件表示的可行域如圖,化目標(biāo)函數(shù)為,聯(lián)立,解得,由圖可知,當(dāng)直線過點(diǎn)時,z取得最大值11,故選:C.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.5、C【解析】
首先根據(jù)圖形計算出矢,弦,再帶入弧田面積公式即可.【詳解】如圖所示:因?yàn)?,,為等邊三角?所以,矢,弦..故選:C【點(diǎn)睛】本題主要考查扇形面積公式,同時考查學(xué)生對題意的理解,屬于中檔題.6、C【解析】
試題分析:圓柱截面可能是矩形;圓錐截面可能是三角形;圓臺截面可能是梯形,該幾何體顯然是球,故選C.7、B【解析】
根據(jù)等比數(shù)列的性質(zhì),即可解出答案。【詳解】故選B【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),同底對數(shù)的運(yùn)算,屬于基礎(chǔ)題。8、B【解析】
利用不等式的性質(zhì),即可求解,得到答案.【詳解】由題意知,根據(jù)不等式的性質(zhì),兩邊同乘,可得成立.故選:B.【點(diǎn)睛】本題主要考查了不等式的性質(zhì)及其應(yīng)用,其中解答中熟記不等式的基本性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、A【解析】
時,恒成立.時,原不等式等價于.由的最小值是2,可得,即.選A.10、C【解析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因?yàn)閳A心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當(dāng)圓心C位于B點(diǎn)時,取得最大值,B點(diǎn)的坐標(biāo)為,即時是最大值.考點(diǎn):線性規(guī)劃綜合問題.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】
奇數(shù)項(xiàng)和偶數(shù)項(xiàng)相減得到和,故,代入公式計算得到答案.【詳解】由題意知:,前式減后式得到:,后式減前式得到故:解得故答案為:7【點(diǎn)睛】本題考查了等差數(shù)列的奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和關(guān)系,通過變換得到是解題的關(guān)鍵.12、.【解析】
本題根據(jù)已知條件,列出關(guān)于等比數(shù)列公比的方程,應(yīng)用等比數(shù)列的求和公式,計算得到.題目的難度不大,注重了基礎(chǔ)知識、基本計算能力的考查.【詳解】設(shè)等比數(shù)列的公比為,由已知,所以又,所以所以.【點(diǎn)睛】準(zhǔn)確計算,是解答此類問題的基本要求.本題由于涉及冪的乘方運(yùn)算、繁分式分式計算,部分考生易出現(xiàn)運(yùn)算錯誤.13、或【解析】
討論直線過原點(diǎn)和直線不過原點(diǎn)兩種情況,分別計算得到答案.【詳解】當(dāng)直線過原點(diǎn)時,設(shè),過點(diǎn),則,即;當(dāng)直線不過原點(diǎn)時,設(shè),過點(diǎn),則,即;綜上所述:直線方程為或.故答案為:或.【點(diǎn)睛】本題考查了直線方程,漏解是容易發(fā)生的錯誤.14、【解析】
取中點(diǎn),連,可證平面,,要使最大,只需求最大值,即可求解.【詳解】取中點(diǎn),連,所以,,,平面,平面,設(shè)中邊上的高為,,當(dāng)且僅當(dāng)時,取等號.故答案為:.【點(diǎn)睛】本題考查錐體的體積計算,考查線面垂直的判定,屬于中檔題.15、【解析】
設(shè)出點(diǎn)C的坐標(biāo),利用|AB|=|AC|,建立方程,根據(jù)A,B,C三點(diǎn)構(gòu)成三角形,則三點(diǎn)不共線且B,C不重合,即可求得結(jié)論.【詳解】設(shè)點(diǎn)的坐標(biāo)為,則由得,化簡得.∵A,B,C三點(diǎn)構(gòu)成三角形∴三點(diǎn)不共線且B,C不重合因此頂點(diǎn)的軌跡方程為.故答案為【點(diǎn)睛】本題考查軌跡方程,考查學(xué)生的計算能力,屬于基礎(chǔ)題.16、【解析】
求圓心到直線的距離,用距離減去半徑即可最小值.【詳解】圓C的圓心為,半徑為,圓心C到直線的距離為:,所以最小值為:故答案為:【點(diǎn)睛】本題考查圓上的點(diǎn)到直線的距離的最值,若圓心距為d,圓的半徑為r且圓與直線相離,則圓上的點(diǎn)到直線距離的最大值為d+r,最小值為d-r.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】
(1)由已知可先求得首項(xiàng),然后由,得,兩式相減后可得數(shù)列的遞推式,結(jié)合得數(shù)列是等比數(shù)列,從而易得通項(xiàng)公式;(2)對數(shù)列可用錯位相減法求其和.不等式恒成立,可轉(zhuǎn)化為先求的最大值.【詳解】(1)由得.由,可知,可得,即.因?yàn)?,所以,故因此是首?xiàng)為,公比為的等比數(shù)列,故.(2)由(1)知.所以①兩邊同乘以得②①②相減得從而于是,當(dāng)是奇數(shù)時,,因?yàn)椋?當(dāng)是偶數(shù)時,因此.因?yàn)?,所以,的最小值?【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查錯位相減法求和.適用錯位相減法求和的數(shù)列一般是,其中是等差數(shù)列,是等比數(shù)列.18、(1)x2【解析】
(1)根據(jù)三角形周長為1,結(jié)合橢圓的定義可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得橢圓方程;(2)分類討論,當(dāng)直線斜率斜存在時,聯(lián)立y=kx+b【詳解】(1)由題意知,4a=1,則a=2,由橢圓離心率e=ca=∴橢圓C的方程x2(2)由題意,當(dāng)直線AB的斜率不存在,此時可設(shè)A(x3,x3),B(x3,-x3).又A,B兩點(diǎn)在橢圓C上,∴x0∴點(diǎn)O到直線AB的距離d=12當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為y=kx+b.設(shè)A(x1,y1),B(x2,y2)聯(lián)立方程y=kx+bx24+y23由已知△>3,x1+x2=-8kb3+4k2,x1x由OA⊥OB,則x1x2+y1y2=3,即x1x2+(kx1+b)(kx2+b)=3,整理得:(k2+1)x1x2+kb(x1+x2)+b2=3,∴(k∴7b2=12(k2+1),滿足△>3.∴點(diǎn)O到直線AB的距離d=b綜上可知:點(diǎn)O到直線AB的距離d=221【點(diǎn)睛】本題主要考查橢圓的定義及橢圓標(biāo)準(zhǔn)方程、圓錐曲線的定值問題以及點(diǎn)到直線的距離公式,屬于難題.探索圓錐曲線的定值問題常見方法有兩種:①從特殊入手,先根據(jù)特殊位置和數(shù)值求出定值,再證明這個值與變量無關(guān);②直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.19、(1)見解析;(2)【解析】
(1)證明,利用平面即可證得,問題得證.(2)過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),連接.當(dāng)與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【詳解】(1)因?yàn)榈酌鏋榱庑?,所以為等邊三角形,又為中點(diǎn)所以,又所以因?yàn)槠矫?,平面所以,又所以平面?)過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),連接當(dāng)與垂直時,與平面所成最大角.由(1)得,此時.所以就是與平面所成的角.在中,由題意可得:,又所以.設(shè),在中由等面積法得:解得:,所以因?yàn)槠矫妫矫嫠云矫嫫矫?,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個平面角因?yàn)闉榈闹悬c(diǎn),且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值為【點(diǎn)睛】本題主要考查了線面垂直的證明,考查了轉(zhuǎn)化能力,還考查了線面角知識,考查了二面角的平面角作法,考查空間思維能力及解三角形,考查了方程思想及計算能力,屬于難題.20、(1);(2).【解析】試題分析:(1)邊AC的中點(diǎn)M在y軸上,由中點(diǎn)公式得,A,C兩點(diǎn)的橫坐標(biāo)和的平均數(shù)為1,同理,B,C兩點(diǎn)的縱坐標(biāo)和的平均數(shù)為1.構(gòu)造方程易得C點(diǎn)的坐標(biāo).(2)根據(jù)C點(diǎn)的坐標(biāo),結(jié)合中點(diǎn)公式,我們可求出M,N兩點(diǎn)的坐標(biāo),代入兩點(diǎn)式即可求出直線MN的方程.解:(1)設(shè)點(diǎn)C(x,y),∵邊AC的中點(diǎn)M在y軸上得=1,∵邊BC的中點(diǎn)N在x軸上得=1,解得x=﹣5,y=﹣2.故所求點(diǎn)C的坐標(biāo)是(﹣5,﹣2).(2)點(diǎn)M的坐標(biāo)是(1,﹣),點(diǎn)N的坐標(biāo)是(1,1),直線MN的方程是=,即5x﹣2y﹣5=1.點(diǎn)評:在求直線方程時,應(yīng)先選擇適當(dāng)?shù)闹本€方程的形式,并注意各種形式的適用條件,用斜截式及點(diǎn)斜式時,直線的斜率必須存在,而兩點(diǎn)式不能表示與坐標(biāo)軸垂直的直線,截距式不能表示與坐標(biāo)軸垂直或經(jīng)過原點(diǎn)的直線,故在解題時,若采用截距式,應(yīng)注意分類討論,判斷截距是否為零;若采用點(diǎn)斜式,應(yīng)先考慮斜率不存在的情況.21、(1)(2)【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024南京地產(chǎn)項(xiàng)目商品房買賣合同終止及配套設(shè)施協(xié)議3篇
- 2024版幼兒園與家長溝通合作協(xié)議3篇
- 2024年度對講機(jī)采購與遠(yuǎn)程監(jiān)控服務(wù)協(xié)議
- 2024年度展覽展示合同標(biāo)的及廉潔承諾3篇
- 《完善我國行政監(jiān)督機(jī)制研究》
- 2024年標(biāo)準(zhǔn)土地使用權(quán)交易中介服務(wù)協(xié)議模板版
- 《養(yǎng)心定悸湯治療室性早搏臨床療效觀察》
- 2024年度挖掘機(jī)操作證考試服務(wù)合同5篇
- 《利用甘油高產(chǎn)柚皮素解脂耶氏酵母菌株的構(gòu)建》
- 2024版加工承攬合同工作范圍及質(zhì)量標(biāo)準(zhǔn)2篇
- 企業(yè)管理制度-薪酬管理制度
- 消毒供應(yīng)室消毒員培訓(xùn)
- 輸血相關(guān)知識培訓(xùn)
- 體育場館照明解決方案
- 團(tuán)購被子合同范例
- 管理學(xué)基礎(chǔ)知識考試題庫(附含答案)
- 中藥涂擦治療
- 2023-2024學(xué)年廣東省深圳市福田區(qū)八年級(上)期末英語試卷
- 2024年高考物理復(fù)習(xí)試題分類訓(xùn)練:動量(教師卷)
- 2024年軍事理論知識全冊復(fù)習(xí)題庫及答案
- FA合同協(xié)議模板新
評論
0/150
提交評論