版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江溫州十五校聯(lián)盟2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.“數(shù)列為等比數(shù)列”是“數(shù)列為等比數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.非充分非必要條件2.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度3.已知滿足,則()A.1 B.3 C.5 D.74.已知奇函數(shù)滿足,則的取值不可能是()A.2 B.4 C.6 D.105.已知m,n是兩條不同的直線,是三個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則6.如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為3,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn)且EF=1,則當(dāng)E,F(xiàn)移動(dòng)時(shí),下列結(jié)論中錯(cuò)誤的是()A.AE∥平面C1BDB.四面體ACEF的體積不為定值C.三棱錐A﹣BEF的體積為定值D.四面體ACDF的體積為定值7.已知數(shù)列{an}為等差數(shù)列,Sn是它的前n項(xiàng)和.若=2,S3=12,則S4=()A.10 B.16 C.20 D.248.先后拋擲枚均勻的硬幣,至少出現(xiàn)一次反面的概率是()A. B. C. D.9.已知函數(shù)若關(guān)于的方程恰有兩個(gè)互異的實(shí)數(shù)解,則的取值范圍為A. B. C. D.10.在中,角所對(duì)的邊分別為,若,則此三角形()A.無解 B.有一解 C.有兩解 D.解的個(gè)數(shù)不確定二、填空題:本大題共6小題,每小題5分,共30分。11.若,則的取值范圍是________.12.已知數(shù)列,,且,則________.13.已知數(shù)列中,其前項(xiàng)和為,,則_____.14.已知數(shù)列的通項(xiàng)公式為,的前項(xiàng)和為,則___________.15.計(jì)算:________.16.在中,,是邊上一點(diǎn),且滿足,若,則_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中(底面為正三角形),平面,,,,是邊的中點(diǎn).(1)證明:平面平面.(2)求點(diǎn)到平面的距離.18.如圖,在平面四邊形ABCD中,,,,.(1)若點(diǎn)E為邊CD上的動(dòng)點(diǎn),求的最小值;(2)若,,,求的值.19.如圖,在斜三棱柱中,側(cè)面是邊長(zhǎng)為的菱形,平面,,點(diǎn)在底面上的射影為棱的中點(diǎn),點(diǎn)在平面內(nèi)的射影為證明:為的中點(diǎn):求三棱錐的體積20.已知⊙C經(jīng)過點(diǎn)、兩點(diǎn),且圓心C在直線上.(1)求⊙C的方程;(2)若直線與⊙C總有公共點(diǎn),求實(shí)數(shù)的取值范圍.21.某商場(chǎng)有獎(jiǎng)銷售中,購(gòu)滿100元商品得1張獎(jiǎng)券,多購(gòu)多得,100張獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,每個(gè)開獎(jiǎng)單位設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè),設(shè)一張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A,B,C,可知其概率平分別為.(1)求1張獎(jiǎng)券中獎(jiǎng)的概率;(2)求1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
數(shù)列是等比數(shù)列與命題是等比數(shù)列是否能互推,然后根據(jù)必要條件、充分條件和充要條件的定義進(jìn)行判斷.【詳解】若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列是等比數(shù)列,若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列不是等比數(shù)列,∴數(shù)列是等比數(shù)列是數(shù)列是等比數(shù)列的充分非必要條件,故選:A.【點(diǎn)睛】本題主要考查充分不必要條件的判斷,注意等比數(shù)列的性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題.2、C【解析】
由,則只需將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度.【詳解】解:因?yàn)?,所以要得到函?shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度.故選:C.【點(diǎn)睛】本題考查了三角函數(shù)圖像的平移變換,屬基礎(chǔ)題.3、B【解析】
已知兩個(gè)邊和一個(gè)角,由余弦定理,可得?!驹斀狻坑深}得,,,代入,化簡(jiǎn)得,解得(舍)或.故選:B【點(diǎn)睛】本題考查用余弦定理求三角形的邊,是基礎(chǔ)題。4、B【解析】
由三角函數(shù)的奇偶性和對(duì)稱性可求得參數(shù)的值.【詳解】由是奇函數(shù)得又因?yàn)榈藐P(guān)于對(duì)稱,所以,解得所以當(dāng)時(shí),得A答案;當(dāng)時(shí),得C答案;當(dāng)時(shí),得D答案;故選B.【點(diǎn)睛】本題考查三角函數(shù)的奇偶性和對(duì)稱性,屬于基礎(chǔ)題.5、C【解析】
利用線面垂直、線面平行、面面垂直的性質(zhì)定理分別對(duì)選項(xiàng)分析選擇.【詳解】對(duì)于A,若,,則或者;故A錯(cuò)誤;對(duì)于B,若,則可能在內(nèi)或者平行于;故B錯(cuò)誤;對(duì)于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質(zhì)定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質(zhì)定理可得,又,∴;故C正確;對(duì)于D.若,,則與可能垂直,如墻角;故D錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查了面面垂直、線面平行、線面垂直的性質(zhì)定理及應(yīng)用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運(yùn)用定理是關(guān)鍵.6、B【解析】
根據(jù)面面平行的性質(zhì)定理,判斷A選項(xiàng)是否正確,根據(jù)錐體體積計(jì)算公式,判斷BCD選項(xiàng)是否正確.【詳解】對(duì)于A選項(xiàng),易得平面與平面平行,所以平面成立,A選項(xiàng)結(jié)論正確.對(duì)于B選項(xiàng),由于長(zhǎng)度一定,所以三角形面積為定值.到平面的距離,也即到平面的距離一定,所以四面體體積為定值,故B選項(xiàng)結(jié)論錯(cuò)誤.對(duì)于C選項(xiàng),由于長(zhǎng)度一定,所以三角形面積為定值.到平面的距離,也即到平面的距離一定,所以三棱錐體積為定值,故C選項(xiàng)結(jié)論正確.對(duì)于D選項(xiàng),由于三角形面積為定值,到平面的距離為定值,所以四面體的體積為定值.綜上所述,錯(cuò)誤的結(jié)論為B選項(xiàng).故選:B【點(diǎn)睛】本小題主要考查利用面面平行證明線面平行,考查三棱錐(四面體)體積的計(jì)算,考查空間想象能力和邏輯推理能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)等差數(shù)列的前n項(xiàng)和公式,即可求出.【詳解】因?yàn)镾3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【點(diǎn)睛】本題主要考查了等差數(shù)列的前n項(xiàng)和公式,屬于中檔題.8、D【解析】
先求得全是正面的概率,用減去這個(gè)概率求得至少出現(xiàn)一次反面的概率.【詳解】基本事件的總數(shù)為,全是正面的的事件數(shù)為,故全是正面的概率為,所以至少出現(xiàn)一次反面的概率為,故選D.【點(diǎn)睛】本小題主要考查古典概型概率計(jì)算,考查正難則反的思想,屬于基礎(chǔ)題.9、D【解析】
畫出圖象及直線,借助圖象分析.【詳解】如圖,當(dāng)直線位于點(diǎn)及其上方且位于點(diǎn)及其下方,或者直線與曲線相切在第一象限時(shí)符合要求.即,即,或者,得,,即,得,所以的取值范圍是.故選D.【點(diǎn)睛】根據(jù)方程實(shí)根個(gè)數(shù)確定參數(shù)范圍,常把其轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù),特別是其中一條為直線時(shí)常用此法.10、C【解析】
利用正弦定理求,與比較的大小,判斷B能否取相應(yīng)的銳角或鈍角.【詳解】由及正弦定理,得,,B可取銳角;當(dāng)B為鈍角時(shí),,由正弦函數(shù)在遞減,,可取.故選C.【點(diǎn)睛】本題考查正弦定理,解三角形中何時(shí)無解、一解、兩解的條件判斷,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用反函數(shù)的運(yùn)算法則,定義及其性質(zhì),求解即可.【詳解】由,得所以,又因?yàn)椋?故答案為:【點(diǎn)睛】本題考查反余弦函數(shù)的運(yùn)算法則,反函數(shù)的定義域,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.12、【解析】
由題意可得{}是以+1為首項(xiàng),以2為公比的等比數(shù)列,再由已知求得首項(xiàng),進(jìn)一步求得即可.【詳解】在數(shù)列中,滿足得,則數(shù)列是以+1為首項(xiàng),以公比為2的等比數(shù)列,得,由,則,得.由,得,故.故答案為:【點(diǎn)睛】本題考查了數(shù)列的遞推式,利用構(gòu)造等比數(shù)列方法求數(shù)列的通項(xiàng)公式,屬于中檔題.13、1【解析】
本題主要考查了已知數(shù)列的通項(xiàng)式求前和,根據(jù)題目分奇數(shù)項(xiàng)和偶數(shù)項(xiàng)直接求即可?!驹斀狻?,則.故答案為:1.【點(diǎn)睛】本題主要考查了給出數(shù)列的通項(xiàng)式求前項(xiàng)和以及極限。求數(shù)列的前常用的方法有錯(cuò)位相減、分組求和、裂項(xiàng)相消等。本題主要利用了分組求和的方法。屬于基礎(chǔ)題。14、【解析】
計(jì)算出,再由可得出的值.【詳解】當(dāng)時(shí),則,當(dāng)時(shí),則,當(dāng)時(shí),.,,因此,.故答案為:.【點(diǎn)睛】本題考查數(shù)列求和,解題的關(guān)鍵就是找出數(shù)列的規(guī)律,考查分析問題和解決問題的能力,屬于中等題.15、3【解析】
直接利用數(shù)列的極限的運(yùn)算法則求解即可.【詳解】.故答案為:3【點(diǎn)睛】本題考查數(shù)列的極限的運(yùn)算法則,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
記,則,則可求出,設(shè),,得,,故結(jié)合余弦定理可得,解得的值,即可求,進(jìn)而求的值.【詳解】根據(jù)題意,不妨設(shè),,則,因,所以,設(shè),由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案為:.【點(diǎn)睛】本題主要考查了余弦定理在解三角形中的綜合應(yīng)用以及同角三角函數(shù)的基本關(guān)系式,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)由,為的中點(diǎn),可得,又平面,可得,即可證明平面,結(jié)合平面,即可證明平面平面;(2)設(shè)點(diǎn)到平面的距離為,由等體積法,,即,求解即可.【詳解】(1)證明:,為的中點(diǎn),.又平面,平面,.又,平面.又平面,平面平面.(2)解:由(1)知,平面,平面,.,,,.設(shè)點(diǎn)到平面的距離為,由,得,即,,即點(diǎn)到平面的距離為.【點(diǎn)睛】本題考查了面面垂直的證明,考查了利用等體積法求點(diǎn)到面的距離,考查了學(xué)生的空間想象能力,屬于中檔題.18、(1);(2)【解析】
(1)建立平面直角坐標(biāo)系,將范圍問題轉(zhuǎn)化為函數(shù)的最值問題,進(jìn)而求解函數(shù)的最值即可;(2)根據(jù)、兩點(diǎn)的位置,可以寫出對(duì)應(yīng)的坐標(biāo),從而在直角三角形中求得的正余弦,進(jìn)而用余弦的和角公式進(jìn)行求解.【詳解】(1)設(shè)AC,BD相交于O,由于,所以,所以,因此,以DB所在的直線為x軸,以AC所在的直線為y軸建立平面直角坐標(biāo)系如下圖所示:故,,,.因?yàn)橹本€CD的方程為,所以可設(shè).所以,.所以,當(dāng)時(shí),最小為.(2)因?yàn)椋?,所以?因此,,.所以,.所以,.【點(diǎn)睛】本題考查利用向量解決幾何問題,涉及范圍問題的求解,屬經(jīng)典好題.19、(1)詳見解析(2)【解析】
(1)先證平面平面,說明平面且,根據(jù)菱形的性質(zhì)即可說明為的中點(diǎn).(2)根據(jù),即求出即可.【詳解】(1)證明:因?yàn)槊?,平面,所以平面平面;交線為過作,則平面,又是菱形,,所以為的中點(diǎn)(2)由題意平面【點(diǎn)睛】本題考查面面垂直的性質(zhì)定理,利用等體積轉(zhuǎn)換法求三棱錐的體積,屬于基礎(chǔ)題.20、(1)(2)【解析】試題分析:(1)解法1:由題意利用待定系數(shù)法可得⊙C方程為.解法2:由題意結(jié)合幾何關(guān)系確定圓心坐標(biāo)和半徑的長(zhǎng)度可得⊙C的方程為.(2)解法1:利用圓心到直線的距離與圓的半徑的關(guān)系得到關(guān)系k的不等式,求解不等式可得.解法2:聯(lián)立直線與圓的方程,結(jié)合可得.試題解析:(1)解法1:設(shè)圓的方程為,則,所以⊙C方程為.解法2:由于AB的中點(diǎn)為,,則線段AB的垂直平分線方程為而圓心C必為直線與直線的交點(diǎn),由解得,即圓心,又半徑為,故⊙C的方程為.(2)解法1:因?yàn)橹本€與⊙C總有公共點(diǎn),則圓心到直線的距離不超過圓的半徑,即,將其變形得,解得.解法2:由,因?yàn)橹本€與⊙C總有公共點(diǎn),則,解得.點(diǎn)睛:判斷直線與圓的位置關(guān)系時(shí),若兩方程已知或圓心到直線的距離易表達(dá),則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達(dá)較繁瑣,則用代數(shù)法.21、(1)(2)【解析】
(1)1張獎(jiǎng)券中獎(jiǎng)包括中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng),且、、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鋼構(gòu)廠房鋼結(jié)構(gòu)構(gòu)件加工與供應(yīng)合同范本2篇
- 2025年健身房設(shè)備采購(gòu)合同
- 2025年反擔(dān)保合同中的保證責(zé)任
- 2025年培訓(xùn)需求分析合同
- 2025年度個(gè)人自行車租賃與維護(hù)服務(wù)合同2篇
- 煤礦生態(tài)修復(fù)與治理項(xiàng)目合同(2025年度)4篇
- 2025年廣西國(guó)金黃金股份有限公司招聘筆試參考題庫(kù)含答案解析
- 二零二五版門式起重機(jī)租賃合同附帶設(shè)備性能優(yōu)化服務(wù)4篇
- 2025年蘇人新版八年級(jí)物理上冊(cè)階段測(cè)試試卷含答案
- 2025年浙江杭州桐廬縣國(guó)有資產(chǎn)投資經(jīng)營(yíng)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 2025福建新華發(fā)行(集團(tuán))限責(zé)任公司校園招聘30人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 山東鐵投集團(tuán)招聘筆試沖刺題2025
- 真需求-打開商業(yè)世界的萬能鑰匙
- 2025年天津市政集團(tuán)公司招聘筆試參考題庫(kù)含答案解析
- GB/T 44953-2024雷電災(zāi)害調(diào)查技術(shù)規(guī)范
- 2024-2025學(xué)年度第一學(xué)期三年級(jí)語(yǔ)文寒假作業(yè)第三天
- 2024年列車員技能競(jìng)賽理論考試題庫(kù)500題(含答案)
- 心律失常介入治療
- 《無人機(jī)測(cè)繪技術(shù)》項(xiàng)目3任務(wù)2無人機(jī)正射影像數(shù)據(jù)處理
- 6S精益實(shí)戰(zhàn)手冊(cè)
- 展會(huì)場(chǎng)館保潔管理服務(wù)方案
評(píng)論
0/150
提交評(píng)論