云南省元江縣一中2024屆數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第1頁
云南省元江縣一中2024屆數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第2頁
云南省元江縣一中2024屆數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第3頁
云南省元江縣一中2024屆數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第4頁
云南省元江縣一中2024屆數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省元江縣一中2024屆數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,那么()A. B. C. D.2.已知函數(shù),若實數(shù)滿足,則的取值范圍是()A. B. C. D.3.已知等比數(shù)列中,,,則()A.10 B.7 C.4 D.124.在0°到360°范圍內(nèi),與角-130°終邊相同的角是()A.50° B.130° C.170° D.230°5.設(shè)是兩個不同的平面,是一條直線,以下命題正確的是()A.若,則 B.若,則C.若,則 D.若,則6.已知數(shù)列且是首項為2,公差為1的等差數(shù)列,若數(shù)列是遞增數(shù)列,且滿足,則實數(shù)a的取值范圍是()A. B.C. D.7.已知底面半徑為1,體積為的圓柱,內(nèi)接于一個高為圓錐(如圖),線段AB為圓錐底面的一條直徑,則從點A繞圓錐的側(cè)面到點B的最短距離為()A.8 B. C. D.48.已知等差數(shù)列的前項和為,若,則()A.18 B.13 C.9 D.79.“φ=”是“函數(shù)y=sin(x+φ)為偶函數(shù)的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件10.如果全集,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是等差數(shù)列,記數(shù)列的前項和為,若,則________.12.已知圓C的方程為,一定點為A(1,2),要使過A點作圓的切線有兩條,則a的取值范圍是____________13.若關(guān)于的方程()在區(qū)間有實根,則最小值是____.14.已知正三棱錐的底面邊長為,側(cè)棱長為2,則該三棱錐的外接球的表面積_____.15.已知數(shù)列滿足,,則______.16.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對岸,已知船的靜水速度,水流速度,則行駛航程最短時,所用時間是__________(精確到).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.若在定義域內(nèi)存在實數(shù),使得成立,則稱函數(shù)有“和一點”.(1)函數(shù)是否有“和一點”?請說明理由;(2)若函數(shù)有“和一點”,求實數(shù)的取值范圍;(3)求證:有“和一點”.18.已知且,比較與的大小.19.已知數(shù)列為遞增的等差數(shù)列,,且成等比數(shù)列.?dāng)?shù)列的前項和為,且滿足.(1)求,的通項公式;(2)令,求的前項和.20.如圖是我國2011年至2017年生活垃圾無害化處理量(單位:億噸)的折線圖(年份代碼1-7分別對應(yīng)年份)(1)建立關(guān)于的回歸方程(系數(shù)精確到0.001);(2)預(yù)測2020年我國生活垃圾無害化處理量.附注:參考數(shù)據(jù):,,回歸方程中斜率和截距的最小二乘估計公式分別為:,.21.已知等比數(shù)列為遞增數(shù)列,,,數(shù)列滿足.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:由,得.故選B.考點:誘導(dǎo)公式.2、B【解析】

求出函數(shù)的定義域,分析函數(shù)的單調(diào)性與奇偶性,將所求不等式變形為,然后利用函數(shù)的單調(diào)性與定義域可得出關(guān)于實數(shù)的不等式組,即可解得實數(shù)的取值范圍.【詳解】對于函數(shù),有,解得,則函數(shù)的定義域為,定義域關(guān)于原點對稱,,所以,函數(shù)為奇函數(shù),由于函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上為減函數(shù),所以,函數(shù)在上為增函數(shù),由得,所以,,解得.因此,實數(shù)的取值范圍是.故選:B.【點睛】本題考查函數(shù)不等式的求解,解答的關(guān)鍵就是分析函數(shù)的單調(diào)性和奇偶性,考查計算能力,屬于中等題.3、C【解析】

由等比數(shù)列性質(zhì)可知,進而根據(jù)對數(shù)的運算法則計算即可【詳解】由題,因為等比數(shù)列,所以,則,故選:C【點睛】本題考查等比數(shù)列的性質(zhì)的應(yīng)用,考查對數(shù)的運算4、D【解析】

先表示與角-130°終邊相同的角,再在0°到360°范圍內(nèi)確定具體角,最后作選擇.【詳解】因為與角-130°終邊相同的角為,所以,因此選D.【點睛】本題考查終邊相同的角,考查基本分析判斷能力,屬基本題.5、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的.6、D【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義可確定是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列通項公式,進而求得;由數(shù)列的單調(diào)性可知;分別在和兩種情況下討論可得的取值范圍.【詳解】由題意得:,,是以為首項,為公比的等比數(shù)列為遞增數(shù)列,即①當(dāng)時,,,即只需即可滿足②當(dāng)時,,,即只需即可滿足綜上所述:實數(shù)的取值范圍為故選:【點睛】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問題,涉及到等差和等比數(shù)列定義的應(yīng)用、等比數(shù)列通項公式的求解、對數(shù)運算法則的應(yīng)用等知識;解題關(guān)鍵是能夠根據(jù)單調(diào)性得到關(guān)于變量和的關(guān)系式,進而通過分離變量的方式將問題轉(zhuǎn)化為變量與關(guān)于的式子的最值的大小關(guān)系問題.7、C【解析】

先求解圓錐的底面半徑,再根據(jù)側(cè)面展開圖的結(jié)構(gòu)計算扇形中間的距離即可.【詳解】設(shè)圓柱的高為,則,得.因為,所以為的中位線,所以,則.即圓錐的底面半徑為1,母線長為4,則展開后所得扇形的弧長為,圓心角為.所以從點A繞圓錐的側(cè)面到點B的最短距離為.故選:C.【點睛】本題主要考查了圓柱與圓錐內(nèi)切求解有關(guān)量的問題以及圓錐的側(cè)面積展開求距離最小值的問題.屬于中檔題.8、B【解析】

利用等差數(shù)列通項公式、前項和列方程組,求出,.由此能求出.【詳解】解:等差數(shù)列的前項和為,,,,解得,..故選:.【點睛】本題考查等差數(shù)列第7項的值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.9、A【解析】試題分析:當(dāng)時,時,是偶函數(shù),當(dāng)是偶函數(shù)時,,所以不能推出是,所以是充分不必要條件,故選A.考點:三角函數(shù)的性質(zhì)10、C【解析】

首先確定集合U,然后求解補集即可.【詳解】由題意可得:,結(jié)合補集的定義可知.本題選擇C選項.【點睛】本題主要考查集合的表示方法,補集的定義等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

由等差數(shù)列的求和公式和性質(zhì)可得,代入已知式子可得.【詳解】由等差數(shù)列的求和公式和性質(zhì)可得:=,且,∴.故答案為:1.【點睛】本題考查了等差數(shù)列的求和公式及性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.12、【解析】

使過A點作圓的切線有兩條,定點在圓外,代入圓方程計算得到答案.【詳解】已知圓C的方程為,要使過A點作圓的切線有兩條即點A(1,2)在圓C外:恒成立.綜上所述:故答案為:【點睛】本題考查了點和圓的位置關(guān)系,通過切線數(shù)量判斷位置關(guān)系是解題的關(guān)鍵.13、【解析】

將看作是關(guān)于的直線方程,則表示點到點的距離的平方,根據(jù)距離公式可求出點到直線的距離最小,再結(jié)合對勾函數(shù)的單調(diào)性,可求出最小值?!驹斀狻繉⒖醋魇顷P(guān)于的直線方程,表示點與點之間距離的平方,點到直線的距離為,又因為,令,在上單調(diào)遞增,所以,所以的最小值為.【點睛】本題主要考查點到直線的距離公式以及對勾函數(shù)單調(diào)性的應(yīng)用,意在考查學(xué)生轉(zhuǎn)化思想的的應(yīng)用。14、.【解析】

由題意推出球心O到四個頂點的距離相等,利用直角三角形BOE,求出球的半徑,即可求出外接球的表面積.【詳解】如圖,∵正三棱錐A﹣BCD中,底面邊長為,底面外接圓半徑為側(cè)棱長為2,BE=1,在三角形ABE中,根據(jù)勾股定理得到:高AE得到球心O到四個頂點的距離相等,O點在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半徑為,表面積為:故答案為.【點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.15、1023【解析】

根據(jù)等比數(shù)列的定義以及前項和公式即可.【詳解】因為所以,所以為首先為1公比為2的等比數(shù)列,所以【點睛】本題主要考查了等比數(shù)列的前項和:屬于基礎(chǔ)題.16、6【解析】

先確定船的方向,再求出船的速度和時間.【詳解】因為行程最短,所以船應(yīng)該朝上游的方向行駛,所以船的速度為km/h,所以所用時間是.故答案為6【點睛】本題主要考查平面向量的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)不存在;(2)a>﹣2;(3)見解析【解析】

(1)解方程即可判斷;(2)由題轉(zhuǎn)化為2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分離參數(shù)a=2x﹣2求值域即可求解;(3)由題意判斷方程cos(x+1)=cosx+cos1是否有解即可.【詳解】(1)若函數(shù)有“和一點”,則不合題意故不存在(2)若函數(shù)f(x)=2x+a+2x有“和一點”.則方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)證明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣2<cos22cos22<0,故01,故方程cos(x+1)=cosx+cos1有解,即f(x)=cosx函數(shù)有“和一點”.【點睛】本題考查了新定義及分類討論的思想應(yīng)用,同時考查了三角函數(shù)的化簡與應(yīng)用,轉(zhuǎn)化為有解問題是關(guān)鍵,是中檔題18、詳見解析【解析】

將兩式作差可得,由、和可得大小關(guān)系.【詳解】當(dāng)且時,當(dāng)時,當(dāng)時,綜上所述:當(dāng)時,;當(dāng)時,;當(dāng)時,【點睛】本題考查作差法比較大小的問題,關(guān)鍵是能夠根據(jù)所得的差進行分類討論;易錯點是忽略差等于零,即兩式相等的情況.19、(1),(2)【解析】

(1)先根據(jù)成等比數(shù)列,可求出公差,即得的通項公式;根據(jù)可得的通項公式;(2)由(1)可得的通項公式,用錯位相減法計算它的前n項和,即得?!驹斀狻浚?)由題得,,設(shè)數(shù)列的公差為,則有,解得,那么等差數(shù)列的通項公式為;數(shù)列的前項和為,且滿足,當(dāng)時,,可得,當(dāng)時,可得,整理得,數(shù)列是等比數(shù)列,通項公式為.(2)由題得,,前n項和,,兩式相減可得,整理化簡得.【點睛】本題考查等比數(shù)列的性質(zhì),以及用錯位相減法求數(shù)列的前n項和,對計算能力有一定要求。20、(1)(2)億噸【解析】

(1)由題意計算平均數(shù)與回歸系數(shù),寫出回歸方程,即可求得答案;(2)計算2020年對應(yīng)的值以及的值,即可求得答案.【詳解】(1)由折線圖可得:關(guān)于的回歸方程:.(2)年對應(yīng)的值為當(dāng)時,預(yù)測年我國生活垃圾無害化處理量為億噸.【點睛】本題主要考查了求數(shù)據(jù)的回歸直線方程和根據(jù)回歸直線方程進行預(yù)測,解題關(guān)鍵是掌握回歸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論