版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
甘肅省武威第十八中學三2025屆數(shù)學高一下期末聯(lián)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.數(shù)列的通項,其前項之和為,則在平面直角坐標系中,直線在軸上的截距為()A.-10 B.-9 C.10 D.92.函數(shù)的圖像大致為()A. B. C. D.3.在中,分別為角的對邊,若,且,則邊=()A. B. C. D.4.在中,已知,,則為()A.等腰直角三角形 B.等邊三角形C.銳角非等邊三角形 D.鈍角三角形5.設、滿足約束條件,則的最大值為()A. B.C. D.6.已知某數(shù)列的前項和(為非零實數(shù)),則此數(shù)列為()A.等比數(shù)列 B.從第二項起成等比數(shù)列C.當時為等比數(shù)列 D.從第二項起的等比數(shù)列或等差數(shù)列7.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.8.數(shù)列1,,,,…的一個通項公式為()A. B. C. D.9.若不等式對一切恒成立,則實數(shù)的最大值為()A.0 B.2 C. D.310.已知圓,直線.設圓O上到直線l的距離等于2的點的個數(shù)為k,則()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.設,若用含的形式表示,則________.12.已知等差數(shù)列滿足,則____________.13.走時精確的鐘表,中午時,分針與時針重合于表面上的位置,則當下一次分針與時針重合時,時針轉過的弧度數(shù)的絕對值等于_______.14.在等比數(shù)列中,若,則等于__________.15.若,其中是第二象限角,則____.16.________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系下,已知圓O:,直線l:()與圓O相交于A,B兩點,且.(1)求直線l的方程;(2)若點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,點D滿足,點M是圓O上任意一點,點N在線段上,且存在常數(shù)使得,求點N到直線l距離的最小值.18.如圖,在三棱錐A﹣BCD中,AB=AD,BD⊥CD,點E、F分別是棱BC、BD的中點.(1)求證:EF∥平面ACD;(2)求證:AE⊥BD.19.已知,,,,求的值.20.在中,角A,B,C的對邊分別為a,b,c,已知.(1)求角B的大小;(2)若,,求的面積.21.已知數(shù)列的前n項和為,且,求數(shù)列的通項公式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:因為數(shù)列的通項公式為,所以其前項和為,令,所以直線方程為,令,解得,即直線在軸上的截距為,故選B.考點:數(shù)列求和及直線方程.2、A【解析】
先判斷函數(shù)為偶函數(shù)排除;再根據(jù)當時,,排除得到答案.【詳解】,偶函數(shù),排除;當時,,排除故選:【點睛】本題考查了函數(shù)圖像的識別,通過函數(shù)的奇偶性和特殊函數(shù)點可以排除選項快速得到答案.3、B【解析】
由利用正弦定理化簡,再利用余弦定理表示出cosA,整理化簡得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點睛】此題考查了正弦、余弦定理,熟練掌握定理,準確計算是解本題的關鍵,是中檔題4、A【解析】
已知第一個等式利用正弦定理化簡,再利用誘導公式及內(nèi)角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.【詳解】將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A與B都為△ABC的內(nèi)角,∴A﹣B=0,即A=B,已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,則△ABC為等腰直角三角形.故選A.【點睛】此題考查了正弦定理,兩角和與差的正弦公式,二倍角的余弦函數(shù)公式,熟練掌握正弦定理是解本題的關鍵.5、C【解析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時對應的最優(yōu)解,再將最優(yōu)解代入目標函數(shù)可得出結果.【詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點的坐標為.平移直線,當該直線經(jīng)過可行域的頂點時,直線在軸上的截距最大,此時取最大值,即,故選:C.【點睛】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結合在坐標軸上的截距取最值來取得,考查數(shù)形結合思想的應用,屬于中等題.6、D【解析】
設數(shù)列的前項和為,運用數(shù)列的遞推式:當時,,當時,,結合等差數(shù)列和等比數(shù)列的定義和通項公式,即可得到所求結論.【詳解】設數(shù)列的前項和為,對任意的,(為非零實數(shù)).當時,;當時,.若,則,此時,該數(shù)列是從第二項起的等差數(shù)列;若且,不滿足,當時,,此時,該數(shù)列是從第二項起的等比數(shù)列.綜上所述,此數(shù)列為從第二項起的等比數(shù)列或等差數(shù)列.故選:D.【點睛】本題考查數(shù)列的遞推式的運用,等差數(shù)列和等比數(shù)列的定義和通項公式,考查分類討論思想和運算能力,屬于中檔題.7、A【解析】
列出每一步算法循環(huán),可得出輸出結果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據(jù)算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.8、A【解析】
把數(shù)列化為,根據(jù)各項特點寫出它的一個通項公式.【詳解】數(shù)列…可以化為,所以該數(shù)列的一個通項公式為.故選:A【點睛】本題考查了根據(jù)數(shù)列各項特點寫出它的一個通項公式的應用問題,是基礎題目.9、C【解析】
采用參變分離法對不等式變形,然后求解變形后的函數(shù)的值域,根據(jù)參數(shù)與新函數(shù)的關系求解參數(shù)最值.【詳解】因為不等式對一切恒成立,所以對一切,,即恒成立.令.易知在內(nèi)為增函數(shù).所以當時,,所以的最大值是.故選C.【點睛】常見的求解參數(shù)范圍的方法:(1)分類討論法(從臨界值、特殊值出發(fā));(2)參變分離法(考慮新函數(shù)與參數(shù)的關系).10、B【解析】
找出圓O的圓心坐標與半徑r,利用點到直線的距離公式求出圓心O到直線l的距離d,根據(jù)d與r的大小關系及r-d的值,即可作出判斷.【詳解】由圓的方程得到圓心O(0,0),半徑,∵圓心O到直線l的距離,且r?d=?1<2,∴圓O上到直線l的距離等于2的點的個數(shù)為2,即k=2.故選:B.【點睛】本題考查直線與圓的位置關系,利用圓心到直線的距離公式求出圓心O到直線l的距離d,根據(jù)d與r的大小關系可判斷直線與圓的位置,考查計算和幾何應用能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
兩邊取以5為底的對數(shù),可得,化簡可得,根據(jù)對數(shù)運算即可求出結果.【詳解】因為所以兩邊取以5為底的對數(shù),可得,即,所以,,故填.【點睛】本題主要考查了對數(shù)的運算法則,屬于中檔題.12、9【解析】
利用等差數(shù)列下標性質(zhì)求解即可【詳解】由等差數(shù)列的性質(zhì)可知,,則.所以.故答案為:9【點睛】本題考查等差數(shù)列的性質(zhì),熟記性質(zhì)是關鍵,是基礎題13、.【解析】
設時針轉過的角的弧度數(shù)為,可知分針轉過的角為,于此得出,由此可計算出的值,從而可得出時針轉過的弧度數(shù)的絕對值的值.【詳解】設時針轉過的角的弧度數(shù)的絕對值為,由分針的角速度是時針角速度的倍,知分針轉過的角的弧度數(shù)的絕對值為,由題意可知,,解得,因此,時針轉過的弧度數(shù)的絕對值等于,故答案為.【點睛】本題考查弧度制的應用,主要是要弄清楚時針與分針旋轉的角之間的等量關系,考查分析問題和計算能力,屬于中等題.14、【解析】
由等比數(shù)列的性質(zhì)可得,,代入式子中運算即可.【詳解】解:在等比數(shù)列中,若故答案為:【點睛】本題考查等比數(shù)列的下標和性質(zhì)的應用.15、【解析】
首先要用誘導公式得到角的正弦值,根據(jù)角是第二象限的角得到角的余弦值,再用誘導公式即可得到結果.【詳解】解:,又是第二象限角故,故答案為.【點睛】本題考查同角的三角函數(shù)的關系,本題解題的關鍵是誘導公式的應用,熟練應用誘導公式是解決三角函數(shù)問題的必備技能,屬于基礎題.16、【解析】
直接利用兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡,即可得到結果.【詳解】.故答案為:.【點睛】本題考查兩角和與差的余弦函數(shù)公式,以及特殊角的三角函數(shù)值,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)等價于圓心O到直線l的距離,再由點到直線的距離公式求解即可;(2)先設點,再結合題意可得點N在以為圓心,半徑為的圓R上,再結合點到直線的距離公式求解即可.【詳解】解:(1)∵圓O:,圓心,半徑,∵直線l:()與圓O相交于A,B兩點,且,∴圓心O到直線l的距離,又,,解得,∴直線l的方程為;(2)∵點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,,∴,,設,,則,,,,,即.又∵點N在線段上,即,共線,,,∵點M是圓O上任意一點,,∴將m,n代入上式,可得,即.則點N在以為圓心,半徑為的圓R上.圓心R到直線l:的距離,又,故點N到直線l:距離的最小值為1.【點睛】本題考查了點到直線的距離公式,重點考查了點的軌跡方程的求法,屬中檔題.18、(1)證明見解析(2)證明見解析【解析】
(1)證明EF∥CD,然后利用直線與平面平行的判斷定理證明EF∥平面ACD;(2)證明BD⊥平面AEF,然后說明AE⊥BD.【詳解】(1)因為點E、F分別是棱BC、BD的中點,所以EF是△BCD的中位線,所以EF∥CD,又因為EF?平面ACD,CD?平面ACD,EF∥平面ACD.(2)由(1)得,EF∥CD,又因為BD⊥CD,所以EF⊥BD,因為AB=AD,點F是棱BD的中點,所以AF⊥BD,又因為EF∩AF=F,所以BD⊥平面AEF,又因為AE?平面AEF,所以AE⊥BD.【點睛】本題考查直線與平面垂直的性質(zhì)以及直線與平面平行的判斷定理的應用,考查邏輯推理能力與空間想象能力,是基本知識的考查.19、【解析】
根據(jù)角的范圍結合條件可求出,的值,然后求出的值,再由二倍角公式可求解.【詳解】由,,得.又,則.由,,得.所以又所以【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生鮮培訓課件教學課件
- 2024年廣告銷售代理合同
- 2024年度企業(yè)級云計算服務平臺合作合同
- 2024國際快遞運輸服務合同詳細條款
- 大班課件春節(jié)教學課件
- 真菌課件圖文教學課件
- 2024年度企業(yè)科技創(chuàng)新與研發(fā)外包合同協(xié)議書
- 2024年建筑工程施工合同與工程監(jiān)理協(xié)議
- 2024物業(yè)合同糾紛案件
- 2024中船工貿(mào)公司船舶建造合同版本
- 雅魯藏布江大拐彎巨型水電站規(guī)劃方案
- 廣西基本醫(yī)療保險門診特殊慢性病申報表
- 城市經(jīng)濟學習題與答案
- 國開成本會計第14章綜合練習試題及答案
- 幼兒園大班科學:《樹葉為什么會變黃》課件
- 1到50帶圈數(shù)字直接復制
- 鐵路工程施工組織設計(施工方案)編制分類
- 幼兒園中班數(shù)學《有趣的圖形》課件
- 《規(guī)劃每一天》教案2021
- 草莓創(chuàng)意主題實用框架模板ppt
- 山大口腔頜面外科學課件第5章 口腔種植外科-1概論、口腔種植的生物學基礎
評論
0/150
提交評論