北京市西城區(qū)第十五中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第1頁
北京市西城區(qū)第十五中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第2頁
北京市西城區(qū)第十五中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第3頁
北京市西城區(qū)第十五中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第4頁
北京市西城區(qū)第十五中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市西城區(qū)第十五中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的平面幾何圖形.此圖由兩個圓構(gòu)成,O為大圓圓心,線段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I,黑色月牙部分記為Ⅱ,兩小月牙之和(斜線部分)部分記為Ⅲ.在整個圖形中隨機取一點,此點取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則()A. B. C. D.2.閱讀如圖所示的程序,若運該程序輸出的值為100,則的面的條件應(yīng)該是()A. B. C. D.3.已知向量,,則向量的夾角的余弦值為()A. B. C. D.4.如圖,一船自西向東勻速航行,上午10時到達一座燈塔P的南偏西75°距塔64海里的M處,下午2時到達這座燈塔的東南方向的N處,則這只船的航行速度為()海里/小時.A. B.C. D.5.已知平面向量,,,,在下列命題中:①存在唯一的實數(shù),使得;②為單位向量,且,則;③;④與共線,與共線,則與共線;⑤若且,則.正確命題的序號是()A.①④⑤ B.②③④ C.①⑤ D.②③6.數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N+),那么a4的值為().A.4 B.8 C.15 D.317.已知定義域的奇函數(shù)的圖像關(guān)于直線對稱,且當時,,則()A. B. C. D.8.的值等于()A. B. C. D.9.在中,,,則()A.或 B. C. D.10.某單位共有老、中、青職工430人,其中有青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()A.9 B.18 C.27 D.36二、填空題:本大題共6小題,每小題5分,共30分。11.已知方程的四個根組成一個首項為的等差數(shù)列,則_____.12.在四面體ABCD中,平面ABC,,,若四面體ABCD的外接球的表面積為,則四面體ABCD的體積為_______.13.在等差數(shù)列中,,,則的值為_______.14.在區(qū)間上,與角終邊相同的角為__________.15.將二進制數(shù)110轉(zhuǎn)化為十進制數(shù)的結(jié)果是_____________.16.設(shè),數(shù)列滿足,,將數(shù)列的前100項從大到小排列得到數(shù)列,若,則k的值為______;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角,,所對的邊分別為,,.若.(1)求角的度數(shù);(2)當時,求的取值范圍.18.已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式(2)數(shù)列的前項和為,若存在,使得成立,求范圍?19.的內(nèi)角的對邊分別為,且.(1)求;(2)若,點在邊上,,,求的面積.20.在中,內(nèi)角所對的邊分別為.已知,.(I)求的值;(II)求的值.21.某高速公路隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個長方形的三邊構(gòu)成(如圖所示).已知隧道總寬度為,行車道總寬度為,側(cè)墻面高,為,弧頂高為.()建立適當?shù)闹苯亲鴺讼担髨A弧所在的圓的方程.()為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請計算車輛通過隧道的限制高度是多少.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

設(shè)OA=1,則AB,分別求出三個區(qū)域的面積,由測度比是面積比得答案.【詳解】設(shè)OA=1,則AB,,以AB中點為圓心的半圓的面積為,以O(shè)為圓心的大圓面積的四分之一為,以AB為弦的大圓的劣弧所對弓形的面積為π﹣1,黑色月牙部分的面積為π﹣(π﹣1)=1,圖Ⅲ部分的面積為π﹣1.設(shè)整個圖形的面積為S,則p1,p1,p3.∴p1=p1>p3,故選D.【點睛】本題考查幾何概型概率的求法,考查數(shù)形結(jié)合的解題思想方法,正確求出各部分面積是關(guān)鍵,是中檔題.2、D【解析】

根據(jù)輸出值和代碼,可得輸出的最高項的值,進而結(jié)合當型循環(huán)結(jié)構(gòu)的特征得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)體,可知因為輸出的值為100,所以由等差數(shù)列求和公式可知求和到19停止,結(jié)合當型循環(huán)結(jié)構(gòu)特征,可知滿足條件時返回執(zhí)行循環(huán)體,因而判斷框內(nèi)的內(nèi)容為,故選:D.【點睛】本題考查了當型循環(huán)結(jié)構(gòu)的代碼應(yīng)用,根據(jù)輸出值選擇條件,屬于基礎(chǔ)題.3、C【解析】

先求出向量,再根據(jù)向量的數(shù)量積求出夾角的余弦值.【詳解】∵,∴.設(shè)向量的夾角為,則.故選C.【點睛】本題考查向量的線性運算和向量夾角的求法,解題的關(guān)鍵是求出向量的坐標,然后根據(jù)數(shù)量積的定義求解,注意計算的準確性,屬于基礎(chǔ)題.4、C【解析】

先求出的值,再根據(jù)正弦定理求出的值,從而求得船的航行速度.【詳解】由題意,在中,由正弦定理得,得所以船的航行速度為(海里/小時)故選C項.【點睛】本題考查利用正弦定理解三角形,屬于簡單題.5、D【解析】

分別根據(jù)向量的平行、模、數(shù)量積即可解決?!驹斀狻慨敒榱阆蛄繒r不滿足,①錯;當為零向量時④錯,對于⑤:兩個向量相乘,等于模相乘再乘以夾角的余弦值,與有可能夾角不一樣或者的模不一樣,兩個向量相等要保證方向、模都相同才可以,因此選擇D【點睛】本題主要考查了向量的共線,零向量。屬于基礎(chǔ)題。6、C【解析】試題分析:,,,故選C.考點:數(shù)列的遞推公式7、D【解析】

根據(jù)函數(shù)的圖像關(guān)于直線對稱可得,再結(jié)合奇函數(shù)的性質(zhì)即可得出答案.【詳解】解:∵函數(shù)的圖像關(guān)于直線對稱,∴,∴,∵奇函數(shù)滿足,當時,,∴,故選:D.【點睛】本題主要考查函數(shù)的奇偶性與對稱性的綜合應(yīng)用,屬于基礎(chǔ)題.8、C【解析】

根據(jù)特殊角的三角函數(shù)值,得到答案.【詳解】.故選C項.【點睛】本題考查特殊角的三角函數(shù)值,屬于簡單題.9、C【解析】

由正弦定理計算即可?!驹斀狻坑深}根據(jù)正弦定理可得即,解得,所以為或,又因為,所以為故選C.【點睛】本題考查正弦定理,屬于簡單題。10、B【解析】試題分析:根據(jù)條件中職工總數(shù)和青年職工人數(shù),以及中年和老年職工的關(guān)系列出方程,解出老年職工的人數(shù),根據(jù)青年職工在樣本中的個數(shù),算出每個個體被抽到的概率,用概率乘以老年職工的個數(shù),得到結(jié)果.設(shè)老年職工有x人,中年職工人數(shù)是老年職工人數(shù)的2倍,則中年職工有2x,∵x+2x+160=430,∴x=90,即由比例可得該單位老年職工共有90人,∵在抽取的樣本中有青年職工32人,∴每個個體被抽到的概率是用分層抽樣的比例應(yīng)抽取×90=18人.故選B.考點:分層抽樣點評:本題是一個分層抽樣問題,容易出錯的是不理解分層抽樣的含義或與其它混淆.抽樣方法是數(shù)學(xué)中的一個小知識點,但一般不難,故也是一個重要的得分點,不容錯過二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設(shè)是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設(shè)另一個方程的根為s,t,(s≤t)根據(jù)韋達定理可知∴s+t=2根據(jù)等差中項的性質(zhì)可知四個跟成的等差數(shù)列為,s,t,,進而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進而根據(jù)韋達定理求得n,最后代入|m﹣n|即可.【詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設(shè)是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設(shè)方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關(guān)系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項的性質(zhì)可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【點睛】本題主要考查了等差數(shù)列的性質(zhì).考查了學(xué)生創(chuàng)造性思維和解決問題的能力.12、【解析】

易得四面體為長方體的一角,再根據(jù)長方體體對角線等于外接球直徑,再利用對角線公式求解即可.【詳解】因為四面體中,平面,且,.故四面體是以為一個頂點的長方體一角.設(shè)則因為四面體的外接球的表面積為,設(shè)其半徑為,故.解得.故四面體的體積.故答案為:【點睛】本題主要考查了長方體一角的四面體的外接球有關(guān)問題,需要注意長方體體對角線等于外接球直徑.屬于中檔題.13、.【解析】

設(shè)等差數(shù)列的公差為,根據(jù)題中條件建立、的方程組,求出、的值,即可求出的值.【詳解】設(shè)等差數(shù)列的公差為,所以,解得,因此,,故答案為:.【點睛】本題考查等差數(shù)列的項的計算,常利用首項和公差建立方程組,結(jié)合通項公式以及求和公式進行計算,考查方程思想,屬于基礎(chǔ)題.14、【解析】

根據(jù)與終邊相同的角可以表示為這一方法,即可得出結(jié)論.【詳解】因為,所以與角終邊相同的角為.【點睛】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學(xué)運算能力,是簡單題.15、6【解析】

將二進制數(shù)從右開始,第一位數(shù)字乘以2的0次冪,第二位數(shù)字乘以2的1次冪,以此類推,進行計算即可.【詳解】,故答案為:6.【點睛】本題考查進位制,解題關(guān)鍵是了解不同進制數(shù)之間的換算法則,屬于基礎(chǔ)題.16、【解析】

根據(jù)遞推公式利用數(shù)學(xué)歸納法分析出與的關(guān)系,然后考慮將的前項按要求排列,再根據(jù)項的序號計算出滿足的值即可.【詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當為奇數(shù)時,用數(shù)學(xué)歸納法證明,當時,成立,設(shè)時,,當時,因為,結(jié)合的單調(diào)性,所以,所以即,所以時成立,所以為奇數(shù)時,;當為偶數(shù)時,用數(shù)學(xué)歸納法證明,當時,成立,設(shè)時,,當時,因為,結(jié)合的單調(diào)性,所以,所以即,所以時成立,所以為偶數(shù)時,;用數(shù)學(xué)歸納法證明:任意偶數(shù)項大于相鄰的奇數(shù)項即證:當為奇數(shù),,當時,符合,設(shè)時,,當時,因為,結(jié)合的單調(diào)性,所以,所以,所以,所以時成立,所以當為奇數(shù)時,,據(jù)此可知:,當時,若,則有,此時無解;當時,此時的下標成首項為公差為的等差數(shù)列,通項即為,若,所以,所以.故答案為:.【點睛】本題考查數(shù)列與函數(shù)的綜合應(yīng)用,難度較難.(1)分析數(shù)列的單調(diào)性時,要注意到數(shù)列作為特殊的函數(shù),其定義域為;(2)證明數(shù)列的單調(diào)性可從與的關(guān)系入手分析.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據(jù)余弦定理即可解決.(2)根據(jù)向量的三角形法則即可解決.【詳解】(1)因為,所以得,所以,所以,因為所以;(2)取的中點,則,,所以所以,從而由平行四邊形性質(zhì)有故.【點睛】本題主要考查了余弦定理以及向量的三角形法則,其中第二問用了完全平方以及加減消元的思想,是本題的一個難點.解決本題的關(guān)鍵是畫一個三角形結(jié)合三角形進行分析.18、(1);(2)【解析】

(1)根據(jù)之間關(guān)系,可得結(jié)果(2)利用錯位相減法,可得,然后使用分離參數(shù)的方法,根據(jù)單調(diào)性,計算其范圍,可得結(jié)果.【詳解】(1)當時,兩式相減得:當時,,不符合上式所以(2)令,所以所以令①②所以①-②:則化簡可得故,若存在,使得成立即存在,成立故,由,則所以可知數(shù)列在單調(diào)遞增所以,故【點睛】本題考查了之間關(guān)系,還考查了錯位相減法求和,本題難點在于的求法,重點在于錯位相減法的應(yīng)用,屬中檔題.19、(1);(2).【解析】

(1)由正弦定理、三角函數(shù)恒等變換化簡已知可得:,結(jié)合范圍,可得,進而可求A的值.(2)在△ADC中,由正弦定理可得,可得,利用三角形內(nèi)角和定理可求,即可求得,再利用三角形的面積公式即可計算得解.【詳解】(1)∵,∴由正弦定理可得:,∴可得:,可得:,∵,∴,可得:,∵,∴,∴,可得:.(2)∵,點D在邊上,,∴在中,由正弦定理,可得:,可得:,∴,可得:,∴,∴,∴.【點睛】本題主要考查了正弦定理、三角函數(shù)恒等變換的應(yīng)用,三角形內(nèi)角和定理及三角形的面積公式在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化能力,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】試題分析:利用正弦定理“角轉(zhuǎn)邊”得出邊的關(guān)系,再根據(jù)余弦定理求出,進而得到,由轉(zhuǎn)化為,求出,進而求出,從而求出的三角函數(shù)值,利用兩角差的正弦公式求出結(jié)果.試題解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A為鈍角,所以.于是,,故.考點:正弦定理、余弦定理、解三角形【名師點睛】利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論