吉林省長春八中2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
吉林省長春八中2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
吉林省長春八中2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
吉林省長春八中2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
吉林省長春八中2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

吉林省長春八中2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.將函數(shù)的圖象向右平移個(gè)單位長度,所得圖象對應(yīng)的函數(shù)解析式是A. B. C. D.2.已知函數(shù)的值域?yàn)?,且圖像在同一周期內(nèi)過兩點(diǎn),則的值分別為()A. B.C. D.3.半圓的直徑,為圓心,是半圓上不同于的任意一點(diǎn),若為半徑上的動(dòng)點(diǎn),則的最小值是()A.2 B.0 C.-2 D.44.圖1是我國古代數(shù)學(xué)家趙爽創(chuàng)制的一幅“勾股圓方圖”(又稱“趙爽弦圖”),它是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形.受其啟發(fā),某同學(xué)設(shè)計(jì)了一個(gè)圖形,它是由三個(gè)全等的鈍角三角形與中間一個(gè)小正三角形拼成一個(gè)大正三角形,如圖2所示,若,,則線段的長為()A.3 B.3.5 C.4 D.4.55.在邊長為2的菱形中,,是的中點(diǎn),則A. B. C. D.6.若兩個(gè)正實(shí)數(shù),滿足,且不等式有解,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.圓關(guān)于直線對稱的圓的方程為()A. B.C. D.8.在中,,,,點(diǎn)P是內(nèi)(包括邊界)的一動(dòng)點(diǎn),且(),則的最大值為()A.6 B. C. D.69.已知向量,,則與的夾角為()A. B. C. D.10.在中,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列,的前項(xiàng)和分別為,,若,則______.12.把一枚質(zhì)地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.13.設(shè),則的值是____.14.設(shè)數(shù)列滿足,,,,______.15.如圖,,分別為的中線和角平分線,點(diǎn)P是與的交點(diǎn),若,,則的面積為______.16.已知函數(shù),該函數(shù)零點(diǎn)的個(gè)數(shù)為_____________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知正項(xiàng)數(shù)列的前項(xiàng)和為,對任意,點(diǎn)都在函數(shù)的圖象上.(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列,求數(shù)列的前項(xiàng)和;(3)已知數(shù)列滿足,若對任意,存在使得成立,求實(shí)數(shù)的取值范圍.18.已知角的頂點(diǎn)在原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上一點(diǎn)的坐標(biāo)是.(1)求;(2)求;19.已知函數(shù),且.(1)求的值;(2)若在上有且只有一個(gè)零點(diǎn),,求的取值范圍.20.在平面直角坐標(biāo)系中,直線截以坐標(biāo)原點(diǎn)為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于點(diǎn),,當(dāng)時(shí),求直線的方程;(3)設(shè),是圓上任意兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,若直線,分別交軸于點(diǎn)和,問是否為定值?若是,請求出該定值;若不是,請說明理由.21.如圖,四面體中,,,為的中點(diǎn).(1)證明:;(2)已知是邊長為2正三角形.(Ⅰ)若為棱的中點(diǎn),求的大??;(Ⅱ)若為線段上的點(diǎn),且,求四面體的體積的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

利用三角函數(shù)圖像平移原則,結(jié)合誘導(dǎo)公式,即可求解.【詳解】函數(shù)的圖象向右平移個(gè)單位長度得到.故選B.【點(diǎn)睛】本題考查三角圖像變換,誘導(dǎo)公式,熟記變換原則,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.2、C【解析】

先利用可求出的值,再利用、兩點(diǎn)橫坐標(biāo)之差的絕對值為周期的一半,計(jì)算出周期,再由可計(jì)算出的值,從而可得出答案.【詳解】由題意可知,,、兩點(diǎn)橫坐標(biāo)之差的絕對值為周期的一半,則,,因此,,,故選C.【點(diǎn)睛】本題考查三角函數(shù)的解析式的求解,求解步驟如下:(1)求、:,;(2)求:根據(jù)題中信息求出最小正周期,利用公式求出的值;(3)求:將對稱中心點(diǎn)和最高、最低點(diǎn)的坐標(biāo)代入函數(shù)解析式,若選擇對稱中心點(diǎn),還要注意函數(shù)在該點(diǎn)附近的單調(diào)性.3、C【解析】

將轉(zhuǎn)化為,利用向量數(shù)量積運(yùn)算化簡,然后利用基本不等式求得表達(dá)式的最小值.【詳解】畫出圖像如下圖所示,,等號(hào)在,即為的中點(diǎn)時(shí)成立.故選C.【點(diǎn)睛】本小題主要考查平面向量加法運(yùn)算,考查平面向量的數(shù)量積運(yùn)算,考查利用基本不等式求最值,屬于中檔題.4、A【解析】

設(shè),可得,求得,在中,運(yùn)用余弦定理,解方程可得所求值.【詳解】設(shè),可得,且,在中,可得,即為,化為,解得舍去),故選.【點(diǎn)睛】本題考查三角形的余弦定理,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.5、D【解析】

選取向量為基底,用基底表示,然后計(jì)算.【詳解】由題意,,.故選D.【點(diǎn)睛】本題考查向量的數(shù)量積,平面向量的線性運(yùn)算,解題關(guān)鍵是選取基底,把向量用基底表示.6、D【解析】

利用基本不等式求得的最小值,根據(jù)不等式存在性問題,解一元二次不等式求得的取值范圍.【詳解】由于,而不等式有解,所以,即,解得或.故選:D【點(diǎn)睛】本小題主要考查利用基本不等式求最小值,考查不等式存在性問題的求解,考查一元二次不等式的解法,屬于中檔題.7、B【解析】

設(shè)圓心關(guān)于直線對稱的圓的圓心為,則由,求出的值,可得對稱圓的方程.【詳解】圓的圓心為,半徑,則不妨設(shè)圓關(guān)于直線對稱的圓的圓心為,半徑為,則由,解得,故所求圓的方程為.故選:B【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程、中點(diǎn)坐標(biāo)公式,需熟記圓的標(biāo)準(zhǔn)形式,屬于基礎(chǔ)題.8、B【解析】

利用余弦定理和勾股定理可證得;取,作,根據(jù)平面向量平行四邊形法則可知點(diǎn)軌跡為線段,由此可確定,利用勾股定理可求得結(jié)果.【詳解】由余弦定理得:如圖,取,作,交于在內(nèi)(包含邊界)點(diǎn)軌跡為線段當(dāng)與重合時(shí),最大,即故選:【點(diǎn)睛】本題考查向量模長最值的求解問題,涉及到余弦定理解三角形的應(yīng)用;解題關(guān)鍵是能夠根據(jù)平面向量線性運(yùn)算確定動(dòng)點(diǎn)軌跡,根據(jù)軌跡確定最值點(diǎn).9、D【解析】

利用夾角公式計(jì)算出兩個(gè)向量夾角的余弦值,進(jìn)而求得兩個(gè)向量的夾角.【詳解】設(shè)兩個(gè)向量的夾角為,則,故.故選:D.【點(diǎn)睛】本小題主要考查兩個(gè)向量夾角的計(jì)算,考查向量數(shù)量積和模的坐標(biāo)表示,屬于基礎(chǔ)題.10、B【解析】

根據(jù)向量的三角形法則進(jìn)行轉(zhuǎn)化求解即可.【詳解】∵,∴,又則故選:B【點(diǎn)睛】本題考查向量加減混合運(yùn)算及其幾何意義,靈活應(yīng)用向量運(yùn)算的三角形法則即可求解,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用等差數(shù)列的性質(zhì)以及等差數(shù)列奇數(shù)項(xiàng)之和與中間項(xiàng)的關(guān)系進(jìn)行化簡求解.【詳解】因?yàn)槭堑炔顢?shù)列,所以,又因?yàn)闉榈炔顢?shù)列,所以,故.【點(diǎn)睛】(1)在等差數(shù)列中,若,則有;(2)在等差數(shù)列.12、【解析】

把一枚質(zhì)地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個(gè),由此能求出兩次都是正面向上的概率.【詳解】把一枚質(zhì)地均勻的硬幣先后拋擲兩次,基本事件有4個(gè),分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點(diǎn)睛】本題考查古典概型的概率計(jì)算,求解時(shí)注意列舉法的應(yīng)用,即列舉出所有等可能結(jié)果.13、【解析】

根據(jù)二倍角公式得出,再根據(jù)誘導(dǎo)公式即可得解.【詳解】解:由題意知:故,即.故答案為.【點(diǎn)睛】本題考查了二倍角公式和誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.14、8073【解析】

對分奇偶討論求解即可【詳解】當(dāng)為偶數(shù)時(shí),當(dāng)為奇數(shù)時(shí),故當(dāng)為奇數(shù)時(shí),故故答案為8073【點(diǎn)睛】本題考查數(shù)列遞推關(guān)系,考查分析推理能力,對分奇偶討論發(fā)現(xiàn)規(guī)律是解決本題的關(guān)鍵,是難題15、【解析】

設(shè),,求點(diǎn)的坐標(biāo),運(yùn)用換元法,求直線方程,再解出交點(diǎn)的坐標(biāo),再利用向量數(shù)量積運(yùn)算求出,最后結(jié)合三角形面積公式求解即可.【詳解】解:由,可設(shè),,則,設(shè),則,直線的方程為,直線的方程為,聯(lián)立直線、方程解得,則,,可得,解得:,即,即,所以,故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,重點(diǎn)考查了兩直線的交點(diǎn)坐標(biāo)及三角形面積公式,屬中檔題.16、3【解析】

令,可得或;當(dāng)時(shí),可解得為函數(shù)一個(gè)零點(diǎn);當(dāng)時(shí),可知,根據(jù)的范圍可求得零點(diǎn);綜合兩種情況可得零點(diǎn)總個(gè)數(shù).【詳解】令,可得:或當(dāng)時(shí),或(舍)為函數(shù)的一個(gè)零點(diǎn)當(dāng)時(shí),,,為函數(shù)的零點(diǎn)綜上所述,該函數(shù)的零點(diǎn)個(gè)數(shù)為:個(gè)本題正確結(jié)果:【點(diǎn)睛】本題考查函數(shù)零點(diǎn)個(gè)數(shù)的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為方程根的個(gè)數(shù)的求解,涉及到余弦函數(shù)零點(diǎn)的求解.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

(1)將點(diǎn)代入函數(shù)的解析式得到,令,由可求出的值,令,由得,兩式相減得出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項(xiàng)公式可求出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求出數(shù)列的前項(xiàng)和;(3)利用分組求和法與裂項(xiàng)法求出數(shù)列的前項(xiàng)和,由題意得出,判斷出數(shù)列各項(xiàng)的符號(hào),得出數(shù)列的最大值為,利用函數(shù)的單調(diào)性得出該函數(shù)在區(qū)間上的最大值為,然后解不等式可得出實(shí)數(shù)的取值范圍.【詳解】(1)將點(diǎn)代入函數(shù)的解析式得到.當(dāng)時(shí),,即,解得;當(dāng)時(shí),由得,上述兩式相減得,得,即.所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,因此,;(2),,因此,①,②由①②得,所以;(3).令為的前項(xiàng)和,則.因?yàn)椋?,,,?dāng)時(shí),,令,,令,則,當(dāng)時(shí),,此時(shí),數(shù)列為單調(diào)遞減數(shù)列,,則,即,那么當(dāng)時(shí),數(shù)列為單調(diào)遞減數(shù)列,此時(shí),則.因此,數(shù)列的最大值為.又,函數(shù)單調(diào)遞增,此時(shí),函數(shù)的最大值為.因?yàn)閷θ我獾?,存在?所以,解得,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用等比數(shù)列前項(xiàng)和求數(shù)列通項(xiàng),同時(shí)也考查了錯(cuò)位相減法求和以及數(shù)列不等式恒成立問題,解題時(shí)要充分利用數(shù)列的單調(diào)性求出數(shù)列的最大項(xiàng)或最小項(xiàng)的值,考查化歸與轉(zhuǎn)化思想的應(yīng)用,屬于難題.18、(1),(2)【解析】

(1)求得點(diǎn)到原點(diǎn)的距離,根據(jù)三角函數(shù)的定義求值;(2)同(1)可求出,然后用誘導(dǎo)公式化簡,再代入值計(jì)算.【詳解】(1)(2),為第四象限,【點(diǎn)睛】本題考查三角函數(shù)的定義,考查誘導(dǎo)公式,屬于基礎(chǔ)題.19、(1)(2)【解析】

(1)利用降次公式、輔助角公式化簡表達(dá)式,利用求得的值.(2)令,結(jié)合的取值范圍以及三角函數(shù)的零點(diǎn)列不等式,解不等式求得的取值范圍.【詳解】(1),,,即.(2)令,則,,,在上有且只有一個(gè)零點(diǎn),,,的取值范圍為.【點(diǎn)睛】本小題主要考查三角恒等變換,考查三角函數(shù)零點(diǎn)問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.20、(1);(2);(3)見解析【解析】

(1)利用點(diǎn)到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結(jié)合勾股定理,可以求出圓的半徑,進(jìn)而可以求出圓的方程;(2)設(shè)出直線的截距式方程,利用圓的切線性質(zhì),得到一個(gè)方程,結(jié)合已知,又得到一個(gè)方程,兩個(gè)方程聯(lián)立,解方程組,即可求出直線直線的方程;(3)設(shè),,則,,,分別求出直線與軸交點(diǎn)坐標(biāo)、直線與軸交點(diǎn)坐標(biāo),求出的表達(dá)式,通過計(jì)算可得.【詳解】(1)因?yàn)辄c(diǎn)到直線的距離為,所以圓的半徑為,故圓的方程為.(2)設(shè)直線的方程為,即,由直線與圓相切,得,①.②由①②解得,此時(shí)直線的方程為.(3)設(shè),,則,,,直線與軸交點(diǎn)坐標(biāo)為,,直線與軸交點(diǎn)坐標(biāo)為,,,為定值2.【點(diǎn)睛】本題考查了圓的垂徑定理、圓的切線性質(zhì)、勾股定理,考查了求直線方程,考查了數(shù)學(xué)運(yùn)算能力.21、(1)證明見解析;(2)(Ⅰ);(Ⅱ)【解析】

(1)取中點(diǎn),連接,通過證明,證得平面,由此證得.(2)(I)通過證明,證得平面,由此證得,利用“直斜邊的中線等于斜邊的一半”這個(gè)定理及其逆定理,證得.(II)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論