版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年恩施市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,,則B.若,,則C.若,,則是異面直線D.若,,,則2.是()A.最小正周期為的偶函數(shù) B.最小正周期為的奇函數(shù)C.最小正周期為的偶函數(shù) D.最小正周期為的奇函數(shù)3.某同學(xué)使用計算器求30個數(shù)據(jù)的平均數(shù)時,錯將其中一個數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實際平均數(shù)的差是()A.3.5 B.3 C.-0.5 D.-34.等差數(shù)列an的公差d<0,且a12=a212,則數(shù)列aA.9 B.10 C.10和11 D.11和125.如果數(shù)列的前項和為,那么數(shù)列的通項公式是()A. B.C. D.6.設(shè),滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.3 B. C.1 D.7.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為()A.4 B.8 C.16 D.328.設(shè)等差數(shù)列{an}的前n項和為Sn.若a1+a3=6,S4=16,則a4=()A.6 B.7 C.8 D.99.已知是奇函數(shù),且.若,則()A.1 B.2 C.3 D.410.已知等差數(shù)列{an}的前n項和為,滿足S5=S9,且a1>0,則Sn中最大的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等比數(shù)列中,已知,則=________________.12.的化簡結(jié)果是_________.13.?dāng)?shù)列中,,以后各項由公式給出,則等于_____.14.已知圓C:,點M的坐標(biāo)為(2,4),過點N(4,0)作直線交圓C于A,B兩點,則的最小值為________15.已知圓,直線l被圓所截得的弦的中點為.則直線l的方程是________(用一般式直線方程表示).16.已知直線:與直線:平行,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足,,.(1)求數(shù)列、的通項公式;(2)求數(shù)列的前項和;(3)設(shè)數(shù)列,試問是否存在正整數(shù),,使,,成等差數(shù)列?若存在,求出,的值;若不存在,請說明理由.18.已知向量與不共線,且,.(1)若與的夾角為,求;(2)若向量與互相垂直,求的值.19.已知分別是數(shù)列的前項和,且.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前項和.20.某同學(xué)利用暑假時間到一家商場勤工儉學(xué),該商場向他提供了三種付款方式:第一種,每天支付38圓;第二種,第一天付4元,第二天付8元,第三天付12元,以此類推:第三種,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你會選擇哪種方式領(lǐng)取報酬呢?21.已知定義在上的函數(shù)的圖象如圖所示(1)求函數(shù)的解析式;(2)寫出函數(shù)的單調(diào)遞增區(qū)間(3)設(shè)不相等的實數(shù),,且,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用線面垂直的判定,線面平行的判定,線線的位置關(guān)系及面面平行的性質(zhì)逐一判斷即可.【詳解】對于A,垂直于同一個平面的兩條直線互相平行,故A正確.對于B,若,,則或,故B錯誤.對于C,若,,則位置關(guān)系為平行或相交或異面,故C錯誤.對于D,若,,,則位置關(guān)系為平行或異面,故D錯誤.故選:A【點睛】本題主要考查了線面垂直的性質(zhì),線面平行的判定和面面平行的性質(zhì),屬于簡單題.2、A【解析】
將函數(shù)化為的形式后再進行判斷便可得到結(jié)論.【詳解】由題意得,∵,且函數(shù)的最小正周期為,∴函數(shù)時最小正周期為的偶函數(shù).故選A.【點睛】判斷函數(shù)最小正周期時,需要把函數(shù)的解析式化為或的形式,然后利用公式求解即可得到周期.3、D【解析】
因為錯將其中一個數(shù)據(jù)105輸入為15,所以此時求出的數(shù)比實際的數(shù)差是,因此平均數(shù)之間的差是.故答案為D4、C【解析】
利用等差數(shù)列性質(zhì)得到a11=0,再判斷S10【詳解】等差數(shù)列an的公差d<0,且a根據(jù)正負關(guān)系:S10或S故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),Sn的最大值,將Sn的最大值轉(zhuǎn)化為5、D【解析】
利用計算即可.【詳解】當(dāng)時,當(dāng)時,即,故數(shù)列為等比數(shù)列則因為,所以故選:D【點睛】本題主要考查了已知來求,關(guān)鍵是利用來求解,屬于基礎(chǔ)題.6、C【解析】
作出不等式組對應(yīng)的平面區(qū)域,結(jié)合圖形找出最優(yōu)解,從而求出目標(biāo)函數(shù)的最大值.【詳解】作出不等式組對應(yīng)的平面區(qū)域,如陰影部分所示;平移直線,由圖像可知當(dāng)直線經(jīng)過點時,最大.,解得,即,所以的最大值為1.故答案為選C【點睛】本題給出二元一次不等式組,求目標(biāo)函數(shù)的最大值,著重考查二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃,也考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.7、B【解析】
根據(jù),則即可求解.【詳解】因為樣本數(shù)據(jù),,…,的方差為2,所以,,…,的方差為,故選B.【點睛】本題主要考查了方差的概念及求法,屬于容易題.8、B【解析】
利用等差數(shù)列的性質(zhì)對已知條件進行化簡,由此求得的值.【詳解】依題意,解得.故選:B【點睛】本小題主要考查等差中項的性質(zhì),屬于基礎(chǔ)題.9、C【解析】
根據(jù)題意,由奇函數(shù)的性質(zhì)可得,變形可得:,結(jié)合題意計算可得的值,進而計算可得答案.【詳解】根據(jù)題意,是奇函數(shù),則,變形可得:,則有,即,又由,則,,故選:.【點睛】本題考查函數(shù)奇偶性的性質(zhì)以及應(yīng)用,涉及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】
由S5=S9可得a7+a8=0,再結(jié)合首項即可判斷Sn最大值【詳解】依題意,由S5=S9,a1>0,所以數(shù)列{an}為遞減數(shù)列,且S9-S5=a6+a7+a8+a9=2(a7+a8)=0,即a7+a8=0,所以a7>0,a8<0,所以則Sn中最大的是S7,故選:B.【點睛】本題考查等差數(shù)列Sn最值的判斷,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】12、【解析】原式,因為,所以,且,所以原式.13、【解析】
可以利用前項的積與前項的積的關(guān)系,分別求得第三項和第五項,即可求解,得到答案.【詳解】由題意知,數(shù)列中,,且,則當(dāng)時,;當(dāng)時,,則,當(dāng)時,;當(dāng)時,,則,所以.【點睛】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,其中解答中熟練的應(yīng)用遞推關(guān)系式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、8【解析】
先將所求化為M到AB中點的距離的最小值問題,再求得AB中點的軌跡為圓,利用點M到圓心的距離減去半徑求得結(jié)果.【詳解】設(shè)A、B中點為Q,連接QC,則QC,所以Q的軌跡是以NC為直徑的圓,圓心為P(5,0),半徑為1,又,即求點M到P的距離減去半徑,又,所以,故答案為8【點睛】本題考查了向量的加法運算,考查了求圓中弦中點軌跡的幾何方法,考查了點點距公式,考查了分析解決問題的能力,屬于中檔題.15、【解析】
將圓的方程化為標(biāo)椎方程,找出圓心坐標(biāo)與半徑,根據(jù)垂徑定理得到直線與直線垂直,根據(jù)直線的斜率求出直線的斜率,確定出直線的方程即可.【詳解】由已知圓的方程可得,所以圓心,半徑為3,由垂徑定理知:直線直線,因為直線的斜率,所以直線的斜率,則直線的方程為,即.故答案為:.【點睛】本題考查直線與圓的位置關(guān)系,考查邏輯思維能力和運算能力,屬于常考題.16、4【解析】
利用直線平行公式得到答案.【詳解】直線:與直線:平行故答案為4【點睛】本題考查了直線平行的性質(zhì),屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);.(2)(3)存在,或者,【解析】
(1)令,得,故,代入等式得到,計算得到.(2)利用錯位相減法得到前N項和.(3),假設(shè)存在正整數(shù),,使成等差數(shù)列,則,解得或者.【詳解】(1)令,得,所以將代入,得所以數(shù)列是以1為首項,2為公比的等比數(shù)列,即.(2)兩式相減得到化簡得到.(3),假設(shè)存在正整數(shù),,使成等差數(shù)列則,即,因為,為正整數(shù),所以存在或者,使得成等差數(shù)列.【點睛】本題考查了等差數(shù)列,等比數(shù)列的通項公式,錯位相減法,綜合性大,技巧性強,意在考查學(xué)生的綜合應(yīng)用能力.18、(1)(2)【解析】
(1)根據(jù)平面向量的數(shù)量積即可解決.(2)根據(jù)兩個向量垂直,數(shù)量積為0即可解決.【詳解】解:(1)(2)由題意可得:,即,,
.【點睛】本題主要考查了平面向量的數(shù)量積,及兩個向量垂直時數(shù)量積為0的情況,屬于基礎(chǔ)題.19、(1),,(2)【解析】
(1)分別求出和時的,,再檢驗即可.(2)利用錯位相減法即可求出數(shù)列的前項和【詳解】(1)當(dāng)時,,當(dāng)時,.檢驗:當(dāng)時,,所以.因為,所以.當(dāng)時,,即,當(dāng)時,整理得到:.所以數(shù)列是以首項為,公差為的等差數(shù)列.所以,即.(2)…………①,……②,①②得:……,,.【點睛】本題第一問考查由數(shù)列前項和求數(shù)列的通項公式,第二問考查數(shù)列求和中的錯位相減法,屬于難題.20、見解析【解析】
,,.下面考察,,的大?。梢钥闯鰰r,.因此,當(dāng)工作時間小于10天時,選用第一種付費方式,時,,,因此,選用第三種付費方式.21、(1);(2);(3);【解析】
(1)根據(jù)函數(shù)的最值可得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流管理中的客戶服務(wù)優(yōu)化
- 現(xiàn)代醫(yī)療辦公環(huán)境的電氣化改造
- 國慶節(jié)包廂套餐活動方案
- 2024年五年級品社下冊《祖國不會忘記他們》說課稿 山東版
- 2023二年級數(shù)學(xué)上冊 6 表內(nèi)乘法(二)綜合與實踐 量一量比一比說課稿 新人教版
- 1 北京的春節(jié) 說課稿-2023-2024學(xué)年語文六年級下冊統(tǒng)編版
- 9《生活離不開他們》 感謝他們的勞動 說課稿-2023-2024學(xué)年道德與法治四年級下冊統(tǒng)編版
- Unit 2 Weather Lesson 1(說課稿設(shè)計)-2023-2024學(xué)年人教新起點版英語二年級下冊001
- 2024年高中英語 Unit 3 Welcome to the unit and reading I說課稿 牛津譯林版選擇性必修第二冊
- 2024-2025學(xué)年高中歷史 第五單元 經(jīng)濟全球化的趨勢 第26課 經(jīng)濟全球化的趨勢(1)教學(xué)說課稿 岳麓版必修2
- 二零二五年度大型自動化設(shè)備買賣合同模板2篇
- 江西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期1月期末英語試題(含解析無聽力音頻有聽力原文)
- GA/T 2145-2024法庭科學(xué)涉火案件物證檢驗實驗室建設(shè)技術(shù)規(guī)范
- 寵物護理行業(yè)客戶回訪制度構(gòu)建
- 電廠檢修管理
- 機動車屬性鑒定申請書
- 2024年中考語文試題分類匯編:非連續(xù)性文本閱讀(學(xué)生版)
- 2024年度窯爐施工協(xié)議詳例細則版B版
- 2024年北京市平谷區(qū)中考英語二模試卷
- 第一屆山東省職業(yè)能力大賽濟南市選拔賽制造團隊挑戰(zhàn)賽項目技術(shù)工作文件(含樣題)
- 尿毒癥替代治療
評論
0/150
提交評論