版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省鄒城第一中學2023-2024學年數(shù)學高一下期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中同時具有性質(zhì):①最小正周期是,②圖象關于點對稱,③在上為減函數(shù)的是()A. B.C. D.2.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.3.已知點在角的終邊上,函數(shù)圖象上與軸最近的兩個對稱中心間的距離為,則的值為()A. B. C. D.4.已知是非零向量,若,且,則與的夾角為()A. B. C. D.5.若,則下列結論正確的是()A.若,則 B.若,則C.若,則 D.若,則6.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為3,2,則輸出v的值為A.35 B.20 C.18 D.97.如圖所示四棱錐的底面為正方形,平面則下列結論中不正確的是()A. B.平面C.直線與平面所成的角等于30° D.SA與平面SBD所成的角等于SC與平面SBD所成的角8.大衍數(shù)列,來源于《乾坤普》中對易傳“大衍之數(shù)五十”的推論,主要用于解釋中國傳統(tǒng)文化中太極衍生原理.數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩翼數(shù)量總和,是中國傳統(tǒng)文化中隱藏著的世界數(shù)學史上第一道數(shù)列題.其前10項依次是0,2,4,8,12,18,24,32,40,50,……則此數(shù)列的第20項為()A.200 B.180 C.128 D.1629.已知,下列不等式中成立的是()A. B. C. D.10.如圖,在四邊形ABCD中,,,,,.則()A. B. C.4 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.己知函數(shù),,則的值為______.12.已知,則的最小值為_______.13.已知方程的兩根分別為、、且,且__________.14.某球的體積與表面積的數(shù)值相等,則球的半徑是15.若6是-2和k的等比中項,則______.16.在長方體中,,,,如圖,建立空間直角坐標系,則該長方體的中心的坐標為_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在△中,所對的邊分別為,,.(1)求;(2)若,求,,.18.某校從高一(1)班和(2)班的某次數(shù)學考試的成績中各隨機抽取了6份數(shù)學成績組成一個樣本,如莖葉圖所示(試卷滿分為100分)。(1)班(2)班7688672352859293(1)試計算這12份成績的中位數(shù);(2)用各班的樣本方差比較兩個班的數(shù)學學習水平,哪個班更穩(wěn)定一些?19.對于三個實數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問:①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實數(shù)的取值范圍;(3)設,,,為2019個互不相同的實數(shù),點()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請說明理由.20.設集合,,求.21.已知函數(shù)的最小正周期是.(1)求ω的值;(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)周期公式排除A選項;根據(jù)正弦函數(shù)的單調(diào)性,排除B選項;將代入函數(shù)解析式,排除D選項;根據(jù)周期公式,將代入函數(shù)解析式,余弦函數(shù)的單調(diào)性判斷C選項正確.【詳解】對于A項,,故A錯誤;對于B項,,,函數(shù)在上單調(diào)遞增,則函數(shù)在上單調(diào)遞增,故B錯誤;對于C項,;當時,,則其圖象關于點對稱;當,,函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在區(qū)間單調(diào)遞減,故C正確;對于D項,當時,,故D錯誤;故選:C【點睛】本題主要考查了求正余弦函數(shù)的周期,單調(diào)性以及對稱性的應用,屬于中檔題.2、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導公式,屬于基礎題.3、C【解析】由題意,則,即,則;又由三角函數(shù)的定義可得,則,應選答案C.4、D【解析】
由得,這樣可把且表示出來.【詳解】∵,∴,,∴,∴,故選D.【點睛】本題考查向量的數(shù)量積,掌握數(shù)量積的定義是解題關鍵.5、D【解析】
根據(jù)不等式的基本性質(zhì)逐一判斷可得答案.【詳解】解:A.當時,不成立,故A不正確;B.取,,則結論不成立,故B不正確;C.當時,結論不成立,故C不正確;D.若,則,故D正確.故選:D.【點睛】本題主要考查不等式的基本性質(zhì),屬于基礎題.6、C【解析】試題分析:模擬算法:開始:輸入成立;,成立;,成立;,不成立,輸出.故選C.考點:1.數(shù)學文化;2.程序框圖.7、C【解析】
根據(jù)空間中垂直關系的判定和性質(zhì),平行關系的判定和性質(zhì),以及線面角的相關知識,對選項進行逐一判斷即可.【詳解】對A:因為底面ABCD為正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正確;對B:因為底面ABCD為正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正確.對C:由A中推導可知AC平面SBD,故取AC與BD交點為O,連接SO,如圖所示:則即為所求線面角,但該三角形中邊長關系不確定,故線面角的大小不定,故C錯誤;對D:由AC平面SBD,故取AC與BD交點為O,連接SO,則即為SA和SC與平面SBD所成的角,因為,故,故D正確.綜上所述,不正確的是C.故選:C.【點睛】本題綜合考查線面垂直的性質(zhì)和判定,線面平行的判定,線面角的求解,屬綜合基礎題.8、A【解析】
由0、2、4、8、12、18、24、32、40、50…,可得偶數(shù)項的通項公式:,即可得出.【詳解】由0、2、4、8、12、18、24、32、40、50…,可得偶數(shù)項的通項公式:,則此數(shù)列第20項=2×102=1.故選:A.【點睛】本題考查了數(shù)列遞推關系、通項公式、歸納法,屬于基礎題.9、A【解析】
逐個選項進行判斷即可.【詳解】A選項,因為,所以.當時即不滿足選項B,C,D.故選A.【點睛】此題考查不等式的基本性質(zhì),是基礎題.10、D【解析】
在中,由正弦定理得到的長,在中,先得到的值,再利用余弦定理,求出的長.【詳解】在中,由正弦定理,得,因為,,所以,在中,由余弦定理得所以.故選:D.【點睛】本題考查正弦定理、余弦定理解三角形,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
將代入函數(shù)計算得到答案.【詳解】函數(shù)故答案為:1【點睛】本題考查了三角函數(shù)的計算,屬于簡單題.12、【解析】
運用基本不等式求出結果.【詳解】因為,所以,,所以,所以最小值為【點睛】本題考查了基本不等式的運用求最小值,需要滿足一正二定三相等.13、【解析】
由韋達定理和兩角和的正切公式可得,進一步縮小角的范圍可得,進而可求.【詳解】方程兩根、,,,,又,,,,,,,結合,,故答案為.【點睛】本題考查兩角和與差的正切函數(shù),涉及韋達定理,屬中檔題.14、3【解析】試題分析:,解得.考點:球的體積和表面積15、-18【解析】
根據(jù)等比中項的性質(zhì),列出等式可求得結果.【詳解】由等比中項的性質(zhì)可得,,得.故答案為:-18【點睛】本題主要考查等比中項的性質(zhì),屬于基礎題.16、【解析】
先求出點B的坐標,再求出M的坐標.【詳解】由題得B(4,6,0),,因為M點是中點,所以點M坐標為.故答案為【點睛】本題主要考查空間坐標的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由得則有=得即.(2)由推出;而,即得,則有解得18、(1)80;(2)兩個班級數(shù)學學習水平相同,(1)班成績更穩(wěn)定一些.【解析】
(1)將成績按照從小到大順序排序,根據(jù)中位數(shù)定義可計算得到結果;(2)根據(jù)莖葉圖數(shù)據(jù)計算出兩個班的數(shù)學成績平均數(shù),根據(jù)方差計算公式可求得樣本方差;由,可得到結論.【詳解】(1)這份成績按照從小到大的順序排列為:,,,,,,,,,,,中位數(shù)為:(2)計算(1)班平均數(shù)為:方差為:(2)班平均數(shù)為:方差為:由,知:兩個班級數(shù)學學習水平相同,(1)班成績更穩(wěn)定一些【點睛】本題考查根據(jù)莖葉圖計算數(shù)據(jù)的中位數(shù)、平均數(shù)及方差、利用方差比較數(shù)據(jù)的穩(wěn)定性的知識;關鍵是能夠熟練掌握中位數(shù)、平均數(shù)及方差的計算公式,屬于基礎題.19、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解析】
(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問題成立轉化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【詳解】(1)①因為,成立,所以,故,0具有“性質(zhì)2”②因為,設,則設,對稱軸為,所以函數(shù)在上單調(diào)遞減,當時,,所以當時,不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因為,1具有“性質(zhì)2”所以化簡得解得或.因為存在及,使得成立,所以存在及使即可.令,則,當時,,所以在上是增函數(shù),所以時,,當時,,故時,因為在上單調(diào)遞減,在上單調(diào)遞增,所以,故只需滿足即可,解得.(3)假設具有“性質(zhì)2018”,則,即證明在任意2019個互不相同的實數(shù)中,一定存在兩個實數(shù),滿足:.證明:由,令,由萬能公式知,將等分成2018個小區(qū)間,則這2019個數(shù)必然有兩個數(shù)落在同一個區(qū)間,令其為:,即,也就是說,在,,,這2019個數(shù)中,一定有兩個數(shù)滿足,即一定存在兩個實數(shù),滿足,從而得證.【點睛】本題主要考查了不等式的證明,根據(jù)存在性問題求參數(shù)的取值范圍,三角函數(shù)的單調(diào)性,萬能公式,考查了創(chuàng)新能力,屬于難題.20、【解析】
首先求出集合,,再根據(jù)集合的運算求出即可.【詳解】因為的解為(舍去),所以,又因為的解為,所以,所以.【點睛】本題考查了集合的運算,對數(shù)與指數(shù)的運算,屬于基礎題.21、(1)(2)函數(shù)f(x)的最大值是2+,此時x的集合為{x|x=+,k∈Z}.【解析】試題分析析:本題是函數(shù)性質(zhì)問題,可借助正弦函數(shù)的圖象與性質(zhì)去研究,根據(jù)周期公式可以求出,當函數(shù)的解析式確定后,可以令,,根據(jù)正弦函數(shù)的最大值何時取得,可以計算出為何值時,函數(shù)值取得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論