浙江省溫嶺市八校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
浙江省溫嶺市八校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
浙江省溫嶺市八校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
浙江省溫嶺市八校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
浙江省溫嶺市八校2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省溫嶺市八校2024屆中考適應(yīng)性考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發(fā),垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米2.下列大學(xué)的?;請D案是軸對稱圖形的是()A. B. C. D.3.下列說法正確的是()A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定C.“明天降雨的概率為”,表示明天有半天都在降雨D.了解一批電視機的使用壽命,適合用普查的方式4.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm5.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為()A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=16.實數(shù)a,b,c在數(shù)軸上對應(yīng)點的位置大致如圖所示,O為原點,則下列關(guān)系式正確的是()A.a(chǎn)﹣c<b﹣c B.|a﹣b|=a﹣b C.a(chǎn)c>bc D.﹣b<﹣c7.如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為()A.10 B.9 C.8 D.78.下列博物院的標(biāo)識中不是軸對稱圖形的是()A. B.C. D.9.小麗只帶2元和5元的兩種面額的鈔票(數(shù)量足夠多),她要買27元的商品,而商店不找零錢,要她剛好付27元,她的付款方式有()種.A.1 B.2 C.3 D.410.在直角坐標(biāo)系中,已知點P(3,4),現(xiàn)將點P作如下變換:①將點P先向左平移4個單位,再向下平移3個單位得到點P1;②作點P關(guān)于y軸的對稱點P2;③將點P繞原點O按逆時針方向旋轉(zhuǎn)90°得到點P3,則P1,P2,P3的坐標(biāo)分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.12.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A,B分別在l3,l2上,則sinα的值是_____.13.已知一個斜坡的坡度,那么該斜坡的坡角的度數(shù)是______.14.已知(x、y、z≠0),那么的值為_____.15.如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號)16.若函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點,則常數(shù)m的值是.三、解答題(共8題,共72分)17.(8分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側(cè)),與y軸交于點C.(1)當(dāng)A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標(biāo);(2)P(m,t)為拋物線上的一個動點.①當(dāng)點P關(guān)于原點的對稱點P′落在直線BC上時,求m的值;②當(dāng)點P關(guān)于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.18.(8分)為響應(yīng)市政府“創(chuàng)建國家森林城市”的號召,某小區(qū)計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.19.(8分)對于平面直角坐標(biāo)系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據(jù)以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標(biāo)為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.20.(8分)如圖,在三個小桶中裝有數(shù)量相同的小球(每個小桶中至少有三個小球),第一次變化:從左邊小桶中拿出兩個小球放入中間小桶中;第二次變化:從右邊小桶中拿出一個小球放入中間小桶中;第三次變化:從中間小桶中拿出一些小球放入右邊小桶中,使右邊小桶中小球個數(shù)是最初的兩倍.(1)若每個小桶中原有3個小球,則第一次變化后,中間小桶中小球個數(shù)是左邊小桶中小球個數(shù)的____倍;(2)若每個小桶中原有a個小球,則第二次變化后中間小桶中有_____個小球(用a表示);(3)求第三次變化后中間小桶中有多少個小球?21.(8分)當(dāng)前,“精準(zhǔn)扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學(xué)七年級共有四個班,已“建檔立卡”的貧困家庭的學(xué)生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.求七年級已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù);將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);現(xiàn)從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.22.(10分)某同學(xué)報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率為______;該同學(xué)從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.23.(12分)如圖,在?ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,延長BA與⊙O相交于點F.若的長為,則圖中陰影部分的面積為_____.24.在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點A在點B左側(cè)).(1)當(dāng)拋物線過原點時,求實數(shù)a的值;(2)①求拋物線的對稱軸;②求拋物線的頂點的縱坐標(biāo)(用含a的代數(shù)式表示);(3)當(dāng)AB≤4時,求實數(shù)a的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.2、B【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項錯誤;

B、是軸對稱圖形,故本選項正確;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.3、B【解析】

利用事件的分類、普查和抽樣調(diào)查的特點、概率的意義以及方差的性質(zhì)即可作出判斷.【詳解】解:A、擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是可能事件,此選項錯誤;B、甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,此選項正確;C、“明天降雨的概率為”,表示明天有可能降雨,此選項錯誤;D、解一批電視機的使用壽命,適合用抽查的方式,此選項錯誤;故選B.【點睛】本題考查方差;全面調(diào)查與抽樣調(diào)查;隨機事件;概率的意義,掌握基本概念是解題關(guān)鍵.4、B【解析】(1)如圖1,當(dāng)點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當(dāng)點C在點B的右側(cè)時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據(jù)題目中所告訴的AB和BC的大小關(guān)系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.5、B【解析】試題分析:根據(jù)作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.6、A【解析】

根據(jù)數(shù)軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數(shù)軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數(shù)與數(shù)軸,弄清數(shù)軸上點表示的數(shù)是解本題的關(guān)鍵.7、D【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個內(nèi)角的度數(shù),再延長五邊形的兩邊相交于一點,并根據(jù)四邊形的內(nèi)角和求出這個角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個數(shù),然后減去3即可得解.詳解:∵五邊形的內(nèi)角和為(5﹣2)?180°=540°,∴正五邊形的每一個內(nèi)角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經(jīng)有3個五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個五邊形.故選D.點睛:本題考查了多邊形的內(nèi)角和公式,延長正五邊形的兩邊相交于一點,并求出這個角的度數(shù)是解題的關(guān)鍵,注意需要減去已有的3個正五邊形.8、A【解析】

如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進行分析即可.【詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【點睛】此題考查軸對稱圖形的概念,解題的關(guān)鍵在于利用軸對稱圖形的概念判斷選項正誤9、C【解析】分析:先根據(jù)題意列出二元一次方程,再根據(jù)x,y都是非負整數(shù)可求得x,y的值.詳解:解:設(shè)2元的共有x張,5元的共有y張,由題意,2x+5y=27∴x=(27-5y)∵x,y是非負整數(shù),∴或或,∴付款的方式共有3種.故選C.點睛:本題考查二元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再根據(jù)實際意義求解.10、D【解析】

把點P的橫坐標(biāo)減4,縱坐標(biāo)減3可得P1的坐標(biāo);讓點P的縱坐標(biāo)不變,橫坐標(biāo)為原料坐標(biāo)的相反數(shù)可得P2的坐標(biāo);讓點P的縱坐標(biāo)的相反數(shù)為P3的橫坐標(biāo),橫坐標(biāo)為P3的縱坐標(biāo)即可.【詳解】∵點P(3,4),將點P先向左平移4個單位,再向下平移3個單位得到點P1,∴P1的坐標(biāo)為(﹣1,1).∵點P關(guān)于y軸的對稱點是P2,∴P2(﹣3,4).∵將點P繞原點O按逆時針方向旋轉(zhuǎn)90°得到點P3,∴P3(﹣4,3).故選D.【點睛】本題考查了坐標(biāo)與圖形的變化;用到的知識點為:左右平移只改變點的橫坐標(biāo),左減右加,上下平移只改變點的縱坐標(biāo),上加下減;兩點關(guān)于y軸對稱,縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù);(a,b)繞原點O按逆時針方向旋轉(zhuǎn)90°得到的點的坐標(biāo)為(﹣b,a).二、填空題(本大題共6個小題,每小題3分,共18分)11、25【解析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.12、【解析】

過點A作AD⊥l1于D,過點B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.【詳解】如圖,過點A作AD⊥l1于D,過點B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.13、【解析】

坡度=坡角的正切值,據(jù)此直接解答.【詳解】解:∵,∴坡角=30°.【點睛】此題主要考查學(xué)生對坡度及坡角的理解及掌握.14、1【解析】解:由(x、y、z≠0),解得:x=3z,y=2z,原式===1.故答案為1.點睛:本題考查了分式的化簡求值和解二元一次方程組,難度適中,關(guān)鍵是先用z把x與y表示出來再進行代入求解.15、②③④【解析】試題解析:根據(jù)已知條件不能推出OA=OD,∴①錯誤;∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正確;∵∠BAC=90°,∠AED=∠AFD=90°,∴四邊形AEDF是矩形,∵AE=AF,∴四邊形AEDF是正方形,∴③正確;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正確;∴②③④正確,16、0或1【解析】分析:需要分類討論:①若m=0,則函數(shù)y=2x+1是一次函數(shù),與x軸只有一個交點;②若m≠0,則函數(shù)y=mx2+2x+1是二次函數(shù),根據(jù)題意得:△=4﹣4m=0,解得:m=1?!喈?dāng)m=0或m=1時,函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點。三、解答題(共8題,共72分)17、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標(biāo)為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】

(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點P′的坐標(biāo),再根據(jù)函數(shù)解析式可以求得點B的坐標(biāo),進而求得直線BC的解析式,再根據(jù)點P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當(dāng)P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標(biāo)為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關(guān)于原點對稱,∴P′(﹣m,﹣t),當(dāng)y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設(shè)直線BC對應(yīng)的函數(shù)解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數(shù)的最小值是﹣4,∴﹣4≤t<3.∵點P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過點P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當(dāng)t=﹣時,P′A3有最小值,此時P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時,m的值是,這個最小值是.【點睛】本題是二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.18、(1)購進A種樹苗1棵,B種樹苗2棵(2)購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元【解析】

(1)設(shè)購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,利用購進A、B兩種樹苗剛好用去1220元,結(jié)合單價,得出等式方程求出即可;(2)結(jié)合(1)的解和購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,可找出方案.【詳解】解:(1)設(shè)購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據(jù)題意得:80x+60(12﹣x)=1220,解得:x=1.∴12﹣x=2.答:購進A種樹苗1棵,B種樹苗2棵.(2)設(shè)購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據(jù)題意得:12﹣x<x,解得:x>8.3.∵購進A、B兩種樹苗所需費用為80x+60(12﹣x)=20x+120,是x的增函數(shù),∴費用最省需x取最小整數(shù)9,此時12﹣x=8,所需費用為20×9+120=1200(元).答:費用最省方案為:購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元.19、(1)①6,②2或4,③1<m<4;(2)或.【解析】

(1)①根據(jù)“折線距離”的定義直接列式計算;②根據(jù)“折線距離”的定義列出方程,求解即可;③根據(jù)“折線距離”的定義列出式子,可知其幾何意義是數(shù)軸上表示數(shù)m的點到表示數(shù)3的點的距離與到表示數(shù)2的點的距離之和小于3.(2)由題意可知,根據(jù)圖像易得t的取值范圍.【詳解】解:(1)①②∴∴b=2或4③,即數(shù)軸上表示數(shù)m的點到表示數(shù)3的點的距離與到表示數(shù)2的點的距離之和小于3,所以1<m<4(2)設(shè)E(x,y),則,如圖,若點E在⊙F上,則.【點睛】本題主要考查坐標(biāo)與圖形,正確理解新定義及其幾何意義,利用數(shù)形結(jié)合的思想思考問題是解題關(guān)鍵.20、(1)5;(2)(a+3);(3)第三次變化后中間小桶中有2個小球.【解析】

(1)(2)根據(jù)材料中的變化方法解答;(3)設(shè)原來每個捅中各有a個小球,根據(jù)第三次變化方法列出方程并解答.【詳解】解:(1)依題意得:(3+2)÷(3﹣2)=5故答案是:5;(2)依題意得:a+2+1=a+3;故答案是:(a+3)(3)設(shè)原來每個捅中各有a個小球,第三次從中間桶拿出x個球,依題意得:a﹣1+x=2ax=a+1所以a+3﹣x=a+3﹣(a+1)=2答:第三次變化后中間小桶中有2個小球.【點睛】考查了一元一次方程的應(yīng)用和列代數(shù)式,解題的關(guān)鍵是找到描述語,列出等量關(guān)系,得到方程并解答.21、(1)15人;(2)補圖見解析.(3).【解析】

(1)根據(jù)三班有6人,占的百分比是40%,用6除以所占的百分比即可得總?cè)藬?shù);(2)用總?cè)藬?shù)減去一、三、四班的人數(shù)得到二班的人數(shù)即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數(shù);(3)根據(jù)題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù):6÷40%=15人;(2)A2的人數(shù)為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數(shù)為:×360°=48°;(3)畫出樹狀圖如下:共6種等可能結(jié)果,符合題意的有3種∴選出一名男生一名女生的概率為:P=.【點睛】本題考查了條形圖與扇形統(tǒng)計圖,概率等知識,準(zhǔn)確識圖,從圖中發(fā)現(xiàn)有用的信息,正確根據(jù)已知畫出樹狀圖得出所有可能是解題關(guān)鍵.22、(1);(2).【解析】

(1)由5個項目中田賽項目有2個,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好是一個田賽項目和一個徑賽項目的情況,再利用概率公式即可求得答案.【詳解】(1)∵5個項目中田賽項目有2個,∴該同學(xué)從5個項目中任選一個,恰好是田賽項目的概率為:.故答案為;(2)畫樹狀圖得:∵共有20種等可能的結(jié)果,恰好是一個田賽項目和一個徑賽項目的有12種情況,∴恰好是一個田賽項目和一個徑賽項目的概率為:.【點睛】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論