2024屆遼寧沈陽市二十中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第1頁
2024屆遼寧沈陽市二十中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第2頁
2024屆遼寧沈陽市二十中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第3頁
2024屆遼寧沈陽市二十中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第4頁
2024屆遼寧沈陽市二十中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆遼寧沈陽市二十中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.三棱錐中,互相垂直,,是線段上一動點,若直線與平面所成角的正切的最大值是,則三棱錐的外接球的表面積是()A. B. C. D.2.若||=2cos15°,||=4sin15°,的夾角為30°,則等于()A. B. C.2 D.3.化簡:()A. B. C. D.4.設(shè)向量,若,則實數(shù)的值為()A.1 B.2 C.3 D.45.化簡的結(jié)果是()A. B.C. D.6.已知,,且,則實數(shù)等于()A.-1 B.-9 C.3 D.97.設(shè),則()A.3 B.2 C.1 D.08.《九章算術(shù)》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)若向此三角形內(nèi)隨機投一粒豆子,則豆子落在其內(nèi)切圓外的概率是()A. B. C. D.9.已知為第二象限角,則所在的象限是()A.第一或第三象限 B.第一象限C.第二象限 D.第二或第三象限10.已知直線與直線平行,則實數(shù)m的值為()A.3 B.1 C.-3或1 D.-1或3二、填空題:本大題共6小題,每小題5分,共30分。11.無限循環(huán)小數(shù)化成最簡分?jǐn)?shù)為________12.福利彩票“雙色球”中紅色球由編號為01,02,…,33的33個個體組成,某彩民利用下面的隨機數(shù)表(下表是隨機數(shù)表的第一行和第二行)選取6個紅色球,選取方法是從隨機數(shù)表中第1行的第6列和第7列數(shù)字開始,由左到右依次選取兩個數(shù)字,則選出來的第3個紅色球的編號為______.4954435482173793232887352056438426349164572455068877047447672176335025839212067613.在中,角、、所對的邊為、、,若,,,則角________.14.正方體中,異面直線和所成角的余弦值是________.15.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為,若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側(cè)面積為________.16.在等比數(shù)列中,已知,則=________________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在等比數(shù)列中,.(1)求的通項公式;(2)若,求數(shù)列的前項和.18.甲乙兩地生產(chǎn)某種產(chǎn)品,他們可以調(diào)出的數(shù)量分別為300噸、750噸.A,B,C三地需要該產(chǎn)品數(shù)量分別為200噸,450噸,400噸,甲地運往A,B,C三地的費用分別為6元/噸、3元/噸,5元/噸,乙地運往A,B,C三地的費用分別為5元/噸,9元/噸,6元/噸,問怎樣調(diào)運,才能使總運費最???19.研究正弦函數(shù)的性質(zhì)(1)寫出其單調(diào)增區(qū)間的表達(dá)式(2)利用五點法,畫出的大致圖像(3)用反證法證明的最小正周期是20.已知數(shù)列的前項和,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.21.已知同一平面內(nèi)的三個向量、、,其中(1,2).(1)若||=2,且與的夾角為0°,求的坐標(biāo);(2)若2||=||,且2與2垂直,求在方向上的投影.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】是線段上一動點,連接,∵互相垂直,∴就是直線與平面所成角,當(dāng)最短時,即時直線與平面所成角的正切的最大.此時,,在直角△中,.三棱錐擴(kuò)充為長方體,則長方體的對角線長為,∴三棱錐的外接球的半徑為,∴三棱錐的外接球的表面積為.選B.點睛:空間幾何體與球接、切問題的求解方法(1)求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.(2)若球面上四點構(gòu)成的三條線段兩兩互相垂直,且,一般把有關(guān)元素“補形”成為一個球內(nèi)接長方體,利用求解.2、B【解析】分析:先根據(jù)向量數(shù)量積定義化簡,再根據(jù)二倍角公式求值.詳解:因為,所以選B.點睛:平面向量數(shù)量積的類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式;二是坐標(biāo)公式;三是利用數(shù)量積的幾何意義.(2)求較復(fù)雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關(guān)公式進(jìn)行化簡.3、A【解析】

.故選A.【點睛】考查向量數(shù)乘和加法的幾何意義,向量加法的運算.4、B【解析】

首先求出的坐標(biāo),再根據(jù)平面向量共線定理解答.【詳解】解:,因為,所以,解得.故選:【點睛】本題考查平面向量共線定理的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】

確定角的象限,結(jié)合三角恒等式,然后確定的符號,即可得到正確選項.【詳解】因為為第二象限角,所以,故選D.【點睛】本題是基礎(chǔ)題,考查同角三角函數(shù)的基本關(guān)系式,象限三角函數(shù)的符號,考查計算能力,常考題型.6、C【解析】

由可知,再利用坐標(biāo)公式求解.【詳解】因為,,且,所以,即,解得,故選:C.【點睛】本題考查向量的坐標(biāo)運算,解題關(guān)鍵是明確.7、B【解析】

先求內(nèi)層函數(shù),將所求值代入分段函數(shù)再次求解即可【詳解】,則故選:B【點睛】本題考查分段函數(shù)具體函數(shù)值的求法,屬于基礎(chǔ)題8、C【解析】

本題首先可以根據(jù)直角三角形的三邊長求出三角形的內(nèi)切圓半徑,然后分別計算出內(nèi)切圓和三角形的面積,最后通過幾何概型的概率計算公式即可得出答案.【詳解】如圖所示,直角三角形的斜邊長為,設(shè)內(nèi)切圓的半徑為,則,解得.所以內(nèi)切圓的面積為,所以豆子落在內(nèi)切圓外部的概率,故選C.【點睛】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關(guān)的幾何概型問題關(guān)鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯誤;(2)基本事件對應(yīng)的區(qū)域測度把握不準(zhǔn)導(dǎo)致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導(dǎo)致錯誤.9、A【解析】

用不等式表示第二象限角,再利用不等式的性質(zhì)求出滿足的不等式,從而確定角的終邊在的象限.【詳解】由已知為第二象限角,則則當(dāng)時,此時在第一象限.當(dāng)時,,此時在第三象限.故選:A【點睛】本題考查象限角的表示方法,不等式性質(zhì)的應(yīng)用,通過角滿足的不等式,判斷角的終邊所在的象限.10、B【解析】

兩直線平行應(yīng)該滿足,利用系數(shù)關(guān)系及可解得m.【詳解】兩直線平行,可得(舍去).選B.【點睛】兩直線平行的一般式對應(yīng)關(guān)系為:,若是已知斜率,則有,截距不相等.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎(chǔ)題型.12、05【解析】

根據(jù)給定的隨機數(shù)表的讀取規(guī)則,從第一行第6、7列開始,兩個數(shù)字一組,從左向右讀取,重復(fù)的或超出編號范圍的跳過,即可.【詳解】根據(jù)隨機數(shù)表,排除超過33及重復(fù)的編號,第一個編號為21,第二個編號為32,第三個編號05,故選出來的第3個紅色球的編號為05.【點睛】本題主要考查了簡單隨機抽樣中的隨機數(shù)表法,屬于容易題.13、.【解析】

利用余弦定理求出的值,結(jié)合角的取值范圍得出角的值.【詳解】由余弦定理得,,,故答案為.【點睛】本題考查余弦定理的應(yīng)用和反三角函數(shù),解題時要充分結(jié)合元素類型選擇正弦定理和余弦定理解三角形,考查計算能力,屬于中等題.14、【解析】

由,可得異面直線和所成的角,利用直角三角形的性質(zhì)可得結(jié)果.【詳解】因為,所以異面直線和所成角,設(shè)正方體的棱長為,則直角三角形中,,,故答案為.【點睛】本題主要考查異面直線所成的角,屬于中檔題題.求異面直線所成的角的角,先要利用三角形中位線定理以及平行四邊形找到異面直線所成的角,然后利用直角三角形的性質(zhì)及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結(jié)果一定要取絕對值.15、【解析】

先求出四棱錐的底面對角線的長度,結(jié)合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,可知四條側(cè)棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側(cè)面積.【詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側(cè)棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側(cè)面積為.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,考查了學(xué)生的空間想象能力與計算求解能力,屬于中檔題.16、【解析】三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)將已知條件化為和后,聯(lián)立解出和后即可得到通項公式;(2)根據(jù)錯位相減法可得結(jié)果.【詳解】(1)因為,所以解得故的通項公式為.(2)由(1)可得,則,①,②①-②得.所以故.【點睛】本題考查了等比數(shù)列通項公式基本量的計算,考查了錯位相減法求數(shù)列的和,屬于中檔題.18、甲到B調(diào)運300噸,從乙到A調(diào)運200噸,從乙到B調(diào)運150噸,從乙到C調(diào)運400噸,總運費最小【解析】

設(shè)從甲到A調(diào)運噸,從甲到B調(diào)運噸,則由題設(shè)可得,總的費用為,利用線性規(guī)劃可求目標(biāo)函數(shù)的最小值.【詳解】設(shè)從甲到A調(diào)運噸,從甲到B調(diào)運噸,從甲到C調(diào)運噸,則從乙到A調(diào)運噸,從乙到B調(diào)運噸,從乙到C調(diào)運噸,設(shè)調(diào)運的總費用為元,則.由已知得約束條件為,可行域如圖所示,平移直線可得最優(yōu)解為.甲到B調(diào)運300噸,從乙到A調(diào)運200噸,從乙到B調(diào)運150噸,從乙到C調(diào)運400噸,總運費最小.【點睛】本題考查線性規(guī)劃在實際問題中的應(yīng)用,屬于基礎(chǔ)題.19、(1)(2)見解析(3)見解析【解析】

(1)利用正弦函數(shù)的圖象和性質(zhì)即可得解;(2)利用五點法作函數(shù)的圖象即可;(3)先證明,再假設(shè)存在,使得,令,可得,令,可得,得到矛盾,即可得證.【詳解】(1)單調(diào)遞增區(qū)間為,所以單調(diào)遞增區(qū)間的表達(dá)式為(2)列表:描點,連線,可得函數(shù)圖象如下:(3)證明:,假設(shè)存在,使得,即,令,則,即;再令,可得,得到矛盾,綜上可知的最小正周期是.【點睛】本題主要考查了正弦函數(shù)的單調(diào)性,五點法作函數(shù)的圖象,考查了反證法的應(yīng)用,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】

(1)本題可令求出的值,然后令求出,即可求出數(shù)列的通項公式;(2)首先可令,然后根據(jù)錯位相減法即可求出數(shù)列的前項和?!驹斀狻?1)當(dāng),,得.當(dāng)時,,,兩式相減,得,化簡得,所以數(shù)列是首項為、公比為的等比數(shù)列,所以。(2)由(1)可知,令,則①,兩邊同乘以公比,得到②,由①②得:所以?!军c睛】本題主要考查了數(shù)列通項的求法以及數(shù)列前項和的方法,求數(shù)列通項常用的方法有:累加法、累乘法、定義法、配湊法等;求數(shù)列前項和常用的方法有:錯位相減法、裂項相消法、公式法、分組求和法等,屬于中等題。21、(1)(2,4)(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論