




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024年中考數(shù)學高頻考點專題復習:銷售問題(實際問題與二次函數(shù))
1.某企業(yè)為杭州計算機產(chǎn)業(yè)基地提供電腦配件.受美元走低的影響,從去年1至9月,該配件的原材料價格
一路攀升,每件配件的原材料價格yi(元)與月份x(l<x<9,且x取整數(shù))之間的函數(shù)關系如下表:
月份X123456789
價格yi(元/件)560580600620640660680700720
隨著國家調(diào)控措施的出臺,原材料價格的漲勢趨緩,至月每件配件的原材料價格(元)與月份(
1012y2x104x412,
且x取整數(shù))之間存在如圖所示的變化趨勢:(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二
次函數(shù)的有關知識,直接寫出yi與x之間的函數(shù)關系式,根據(jù)如圖所示的變化趨勢,直接寫出yz與x之間滿
足的一次函數(shù)關系式;
(2)若去年該配件每件的售價為1000元,生產(chǎn)每件配件的人力成本為50元,其它成本30元,該配件在1
至9月的銷售量田(萬件)與月份x滿足關系式pi=0.1x+l.l(l<x<9,且x取整數(shù)),10至12月的銷售量P2
(萬件)P2=-0.1x+2.9(104X412,且x取整數(shù)).求去年哪個月銷售該配件的利潤最大,并求出這個最大利潤.
2.榮昌公司要將本公司100噸貨物運往某地銷售,經(jīng)與春晨運輸公司協(xié)商,計劃租用甲,乙兩種型號的汽車
共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多
能裝該種貨物18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費用2500元;租用2輛甲型汽車和1輛乙
型汽車共需費用2450元,且同一種型號汽車每輛租車費用相同.
(1)求租用一輛甲型汽車,一輛乙型汽車的費用分別是多少元?
(2)若榮昌公司計劃此次租車費用不超過5000元.通過計算求出該公司有幾種租車方案?請你設計出來,
并求出最低的租車費用.
(3)該商業(yè)公司生產(chǎn)的此時令商品每件成本為15元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來20天內(nèi)的日銷量
m(件)與時間t(天)的函數(shù)關系:m=-2t+100;該商品每天的價格y(元/件)與時間t(天)的函數(shù)關系
為:y=^-t+20(l<t<20),其中t取整數(shù);在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利
1
潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤時間t(天)的
增大而增大(含20天的日銷售利潤和第19天的日銷售利潤相等的情況),求a的最小值.
3.我市一家電子計算器專賣店每只進價13元,售價20元,多買優(yōu)惠;凡是一次買10只以上的,每多買1
只,所買的全部計算器每只就降低0.10元,例如,某人買20只計算器,于是每只降價0.10X(20-10)=1(元),
因此,所買的全部20只計算器都按照每只19元計算,但是最低價為每只16元.
(1)求一次至少買多少只,才能以最低價購買?
(2)寫出該專賣店當一次銷售x(時,所獲利潤y(元)與x(只)之間的函數(shù)關系式,并寫出自變量x的取
值范圍;
(3)若店主一次賣的只數(shù)在10至50只之間,問一次賣多少只獲得的利潤最大?其最大利潤為多少?
4.東方專賣店專銷某種品牌的計算器,進價12元/只,售價20元/只.為了促銷,專賣店決定凡是買10只
以上的,每多買一只,售價就降低0.10元(例如,某人買20只計算器,于是每只降價0.10x(20-10)=1元,
就可以按19元/只的價格購買),但是最低價為16元/只.
(1)求顧客一次至少買多少只,才能以最低價購買?
(2)寫出當一次購買x只時(x>10),禾!|潤〉(元)與購買量工(只)之間的函數(shù)關系式;
(3)有一天,一位顧客買了46只,另一位顧客買了50只,專賣店發(fā)現(xiàn)賣了50只反而比賣了46只賺的錢少,
為了使每次賣得多賺錢也多,在其他促銷條件不變的情況下,最低價16元/只至少要提高到多少元?
5.某黃金珠寶商店,今年4月份以前,每天的進貨量與銷售量均為1000克,進入4月份后,每天的進貨量
保持不變,因國際金價大跌走熊,市場需求量不斷增加.如圖是4月前后一段時期庫存量】(克)與銷售時間r(月
份)之間的函數(shù)圖象.(4月份以30天計算)
2
投資金額X(萬元)X5X15
銷售收入y(萬元)yi=kx3y2=ax2+bx(a^0)2.810
(Q0)
(1)該商店一月份開始出現(xiàn)供不應求的現(xiàn)象,4月份的平均日銷售量為一克?
(2)為滿足市場需求,商店準備投資20萬元同時購進A、B兩種新黃金產(chǎn)品.其中購買A、B兩種新黃金產(chǎn)
品所投資的金額與銷售收入存在如圖所示的函數(shù)對應關系.請你判斷商店這次投資能否盈利?
(3)在(2)的其他條件不變的情況下,商店準備投資m萬元同時購進A、B兩種新黃金產(chǎn)品,并實現(xiàn)最大盈
利3.2萬元,請求出m的值.(利潤=銷售收入-投資金額)
6.某商場銷售一種商品,進價為每個20元,經(jīng)調(diào)查發(fā)現(xiàn),每天的銷售量y(個)與每個商品的售價x(元)
滿足一次函數(shù)關系,其部分數(shù)據(jù)如下所示:
每個商品的售價X(元)304050
每天的銷售量y(個)1008060
⑴求y與尤之間的函數(shù)表達式;
⑵設商場每天獲得的總利潤為w(元),求w與X之間的函數(shù)表達式;
⑶不考慮其他因素,當商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?
7.某商家經(jīng)營某種商品,該商品的進價為30元/件,根據(jù)市場調(diào)查發(fā)現(xiàn),該商品每周的銷售量y(單位:件)
與銷售價x(單位:元/件)(尤為正整數(shù))之間的關系繪制成函數(shù)圖像如圖所示.
⑴求y與尤的函數(shù)關系式(不求自變量的取值范圍);
(2)若某周該商品的銷售量不少于800件,求這周該商家銷售這種商品獲得的最大利潤;
⑶規(guī)定這種商品的銷售價不超過進價的2倍,若商品的進價每件提高加元(〃7>0)時,該商家每周銷售這種
商品的利潤仍隨售價的增大而增大,請求出m的取值范圍.
3
8.垃圾分類作為一個公共管理的綜合系統(tǒng)工程,需要社會各個方面共同發(fā)力.洛陽市某超市計劃定制一款家
用分類垃圾桶,獨家經(jīng)銷,生產(chǎn)廠家給出如下定制方案:不收設計費,定制不超過200套時.每套費用60元;
超過200套后,超出的部分8折優(yōu)惠.已知該超市定制這款垃圾桶的平均費用為56元1套
i的Xf
⑴該超市定制了這款垃圾桶多少套?
⑵超市經(jīng)過市場調(diào)研發(fā)現(xiàn):當此款垃圾桶售價定為80/套時,平均每天可售出20套;售價每降低1元.平均每
天可多售出2套,售價下降多少元時.可使該超市平均每天銷售此款垃圾桶的利潤最大?
9.北京冬奧會推出的吉祥物"冰墩墩""雪融融”深受人們的喜愛,銷售火爆.某經(jīng)銷商以60元/個的價格購進
了一批"冰墩墩"擺件,打算采取線下和線上兩種方式銷售,調(diào)查發(fā)現(xiàn)線下每周銷售量y個與售價x元/個(x>60)
滿足一次函數(shù)關系:
售價無(元/個)8090100
銷量y(個)400300200
線下銷售,每個擺件的利潤不得高于進價的80%;線上售價為100元/個,供不應求.
⑴求y與尤的函數(shù)表達式;
⑵若該經(jīng)銷商共購進“冰墩墩”1000個,一周內(nèi)全部銷售完.如何分配線下和線上的銷量,可使全部售完后獲
得的利潤最大,最大利潤是多少?(不計其它成本)
10.某超市采購了兩批同樣的冰墩墩掛件,第一批花了6600元,第二批花了8000元,第一批每個掛件的進
價是第二批的1.1倍,且第二批比第一批多購進50個.
⑴求第二批每個掛件的進價;
(2)兩批掛件售完后,該超市以第二批每個掛件的進價又采購一批同樣的掛件,經(jīng)市場調(diào)查發(fā)現(xiàn),當售價為每
個60元時,每周能賣出40個,若每降價1元,則每周多賣10個.求每個掛件售價定為多少元時,每周可獲
得最大利潤,最大利潤是多少?
11.學校"科技創(chuàng)新"社團向市場推出一種新型電子產(chǎn)品,試銷發(fā)現(xiàn):該電子產(chǎn)品的銷售價格y(元/件)與銷售
量無(件)之間滿足一次函數(shù)關系,其圖象如圖所示,已知該產(chǎn)品的成本價是40元/件.
4
⑴求y與尤之間的函數(shù)關系式;
(2)求銷售利潤w(元)關于銷售量x(件)的函數(shù)解析式,當銷售量為多少時,銷售利潤最大?最大值是多少?
12.某商場對進貨價為100元/件的新商品的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(件)與銷售單價無(元/
件)存在一次函數(shù)關系,如圖所示.
⑴求y關于x的函數(shù)關系式(不要求寫出x的取值范圍);
(2)寫出每天的利潤W(元)關于銷售單價x的函數(shù)解析式.若你是商場負責人,你會將售價定為多少,來保證
每天獲得的利潤最大?最大利潤是多少?
13.一名大學畢業(yè)生響應國家"自主創(chuàng)業(yè)”的號召,在成都市高新區(qū)租用了一個門店,聘請了兩名員工,計劃銷
售一種產(chǎn)品.已知該產(chǎn)品成本價是20元/件,其銷售價不低于成本價,且不高于30元/件,員工每人每天的工
資為200元.經(jīng)過市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價X(元/件)之間的函數(shù)關系如圖所示.
(1)求y與x之間的函數(shù)關系式;
(2)求每件產(chǎn)品銷售價為多少元時,每天門店的純利潤最大?最大純利潤是多少?(純利潤=銷售收入-產(chǎn)
品成本-員工工資)
14.某商場銷售一種筆記本,進價為每本10元.試營銷階段發(fā)現(xiàn):當銷售單價為12元時,每天可賣出100
本,如調(diào)整價格,每漲價1元,每天要少賣出io本.設該筆記本的銷售單價為x元,每天獲得的銷售利潤為y
元.
5
(1)當x》12時,求y與X之間的函數(shù)關系式;
(2)當12WXW15時,求銷售單價為多少元時,該筆記本每天的銷售利潤最大?并求出最大值.
15."垃圾分類,利在千秋”.某廢品回收站的廢紙回收價為1.5元/千克,每天可回收100千克.回收價格每
增加0.1元/千克,每天可多回收廢紙40千克.如果廢紙銷往廢品收購公司的價格為2.5元/千克,銷售廢紙的
利潤為W元,如何定回收價可以使得當天利潤不低于150元?
16.某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,
則每周就會少賣出5件,但每件售價不能高于55元,設每件商品的售價上漲X元(X為整數(shù)),每周的銷售利潤
為y元.
⑴求y與尤的函數(shù)關系式,并直接寫出自變量尤的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
⑶每件商品的售價定為多少元時,每周的利潤恰好是2145元?
參考答案:
()()去年月銷售該配件的利潤最大,最大利潤為萬元.
1.1yi=20x+540,y2=10x+630;24450
2.(1)租用一輛甲型汽車的費用是800元,租用一輛乙型汽車的費用是850元;(2)共有三種方案,分別是:
方案一:租用甲型汽車2輛,租用乙型汽車4輛;方案二:租用甲汽車3輛,租用乙型汽車3輛;方案三:
9
租用甲型汽車4輛,租用乙型汽車2輛.最低運費是4900元;(3)a的最小值是:.
4
3.解:(1)設一次購買x只,才能以最低價購買,
貝I]有:0.1(x-10)=20-16,
解這個方程得x=50;
答一次至少買50只,才能以最低價購買.
(2Qx-13x=7x(Q<x<S0)
y=S[120-13;-0.1(x-10;]=
116x-13x=3x(x>509
2
--inx+8xri0<x<50;
2
(3)將y=-^-x+8x
6
配方得y=--G-4<))2,+160>
z1A
???店主一次賣40只時可獲得最高利潤,最高利潤為160元.
(也可用公式法求得)
4.(1)50;(2)當10<x450時,y=[20-0.l(.x-10)-12]x=-0.lx2+9x
當x>50時,y=(20-16)x=4x.(3)16.5
5.(1)5,1220;(2)不能盈利;(3)10萬元
6.(1)y=~2x+160
(2)W=-2X2+200X-3200
⑶當商品的售價為50元時,商場每天獲得的總利潤最大,最大利潤是1800元
7.⑴y與X的函數(shù)關系式為:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年吉林省四平市單招職業(yè)適應性測試題庫新版
- 2025年贛南衛(wèi)生健康職業(yè)學院單招職業(yè)技能測試題庫及答案1套
- 汽車運用工程學復習試題附答案
- 社區(qū)康復復習試題有答案
- 知識產(chǎn)權交易市場的監(jiān)管與發(fā)展趨勢
- 2025年山西省安全員《A證》考試題庫及答案
- 2025年黑龍江省綏化市單招職業(yè)適應性測試題庫新版
- 2025年鶴壁職業(yè)技術學院單招職業(yè)適應性測試題庫必考題
- 2025年湖南工程職業(yè)技術學院單招職業(yè)適應性測試題庫完美版
- 2025年哈爾濱城市職業(yè)學院單招職業(yè)傾向性測試題庫一套
- 粵教粵科版三年級下冊科學全冊課時練(同步練習)
- 電網(wǎng)數(shù)字化項目工作量度量規(guī)范應用指南(2020版)
- 小學開學第一課禁毒安全
- 2025年砌筑工職業(yè)技能(中級)知識考試題庫及答案
- 開題報告:適應人口發(fā)展趨勢的區(qū)域教育結(jié)構(gòu)優(yōu)化與政策調(diào)整研究
- 【MOOC】跨文化交際-蘇州大學 中國大學慕課MOOC答案
- 《婚戀觀教育》課件
- 醫(yī)療器械質(zhì)量負責人崗位職責
- 中醫(yī)小兒常見皮膚病
- 第十七屆山東省職業(yè)院校技能大賽機器人系統(tǒng)集成應用技術樣題1學生賽
- 血管通路的介入治療
評論
0/150
提交評論