山東省棗莊市薛城區(qū)奚仲中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第1頁
山東省棗莊市薛城區(qū)奚仲中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第2頁
山東省棗莊市薛城區(qū)奚仲中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第3頁
山東省棗莊市薛城區(qū)奚仲中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第4頁
山東省棗莊市薛城區(qū)奚仲中學(xué)2024屆中考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省棗莊市薛城區(qū)奚仲中學(xué)2024屆中考數(shù)學(xué)四模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,點(diǎn)O′在第一象限,⊙O′與x軸相切于H點(diǎn),與y軸相交于A(0,2),B(0,8),則點(diǎn)O′的坐標(biāo)是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)2.下列命題中,錯(cuò)誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對稱圖形,又是中心對稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分3.一個(gè)圓錐的底面半徑為,母線長為6,則此圓錐的側(cè)面展開圖的圓心角是()A.180° B.150° C.120° D.90°4.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,F(xiàn)N∥DC,則∠F的度數(shù)為()A.70° B.80° C.90° D.100°5.計(jì)算的結(jié)果是()A.1 B.-1 C. D.6.如圖,BC是⊙O的直徑,A是⊙O上的一點(diǎn),∠B=58°,則∠OAC的度數(shù)是()A.32° B.30° C.38° D.58°7.納米是一種長度單位,1納米=10-9米,已知某種植物花粉的直徑約為35000納米,那么用科學(xué)記數(shù)法表示該種花粉的直徑為()A.米 B.米 C.米 D.米8.輪船沿江從港順流行駛到港,比從港返回港少用3小時(shí),若船速為26千米/時(shí),水速為2千米/時(shí),求港和港相距多少千米.設(shè)港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.9.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°10.如圖,每個(gè)小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知(x-ay)(x+ay),那么a=_______12.如圖,⊙O中,弦AB、CD相交于點(diǎn)P,若∠A=30°,∠APD=70°,則∠B等于_____.13.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點(diǎn)D,如果EF=8,AD=2,則⊙O半徑的長是_____.14.如圖,點(diǎn)D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.15.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點(diǎn)D,滿足AD=AB,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當(dāng)DC’//BC時(shí),旋轉(zhuǎn)角度α的值為_________,16.已知圓錐的底面半徑為40cm,母線長為90cm,則它的側(cè)面展開圖的圓心角為_______.17.從三角形(非等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對邊相交,該頂點(diǎn)與該交點(diǎn)間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果其中一個(gè)小三角形是等腰三角形,另一個(gè)與原三角形相似,那么我們把這條線段叫做這個(gè)三角形的完美分割線,如圖,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,則CD的長為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.求樓間距AB;若男生樓共30層,層高均為3m,請通過計(jì)算說明多少層以下會(huì)受到擋光的影響?參考數(shù)據(jù):,,,,,19.(5分)如圖,AB是半圓O的直徑,D為弦BC的中點(diǎn),延長OD交弧BC于點(diǎn)E,點(diǎn)F為OD的延長線上一點(diǎn)且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.20.(8分)如圖,△DEF是由△ABC通過一次旋轉(zhuǎn)得到的,請用直尺和圓規(guī)畫出旋轉(zhuǎn)中心.21.(10分)已知,數(shù)軸上三個(gè)點(diǎn)A、O、P,點(diǎn)O是原點(diǎn),固定不動(dòng),點(diǎn)A和B可以移動(dòng),點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為.(1)若A、B移動(dòng)到如圖所示位置,計(jì)算的值.(2)在(1)的情況下,B點(diǎn)不動(dòng),點(diǎn)A向左移動(dòng)3個(gè)單位長,寫出A點(diǎn)對應(yīng)的數(shù),并計(jì)算.(3)在(1)的情況下,點(diǎn)A不動(dòng),點(diǎn)B向右移動(dòng)15.3個(gè)單位長,此時(shí)比大多少?請列式計(jì)算.22.(10分)如圖,已知點(diǎn)D在△ABC的外部,AD∥BC,點(diǎn)E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點(diǎn)F,如果∠AFE=∠D,求證:.23.(12分)如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.24.(14分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

過O'作O'C⊥AB于點(diǎn)C,過O'作O'D⊥x軸于點(diǎn)D,由切線的性質(zhì)可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點(diǎn)坐標(biāo).【詳解】如圖,過O′作O′C⊥AB于點(diǎn)C,過O′作O′D⊥x軸于點(diǎn)D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點(diǎn)坐標(biāo)為(4,5),故選:D.【點(diǎn)睛】本題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標(biāo)計(jì)算.2、C【解析】

根據(jù)三角形的性質(zhì)即可作出判斷.【詳解】解:A、正確,符合三角形三邊關(guān)系;B、正確;三角形外角和定理;C、錯(cuò)誤,等邊三角形既是軸對稱圖形,不是中心對稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.【點(diǎn)睛】本題考查了命題真假的判斷,屬于基礎(chǔ)題.根據(jù)定義:符合事實(shí)真理的判斷是真命題,不符合事實(shí)真理的判斷是假命題,不難選出正確項(xiàng).3、B【解析】

解:,解得n=150°.故選B.考點(diǎn):弧長的計(jì)算.4、B【解析】

首先利用平行線的性質(zhì)得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質(zhì)得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進(jìn)而求出∠B的度數(shù)以及得出∠F的度數(shù).【詳解】∵M(jìn)F∥AD,F(xiàn)N∥DC,∠A=120°,∠C=80°,

∴∠BMF=120°,∠FNB=80°,

∵將△BMN沿MN翻折得△FMN,

∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,

∴∠F=∠B=180°-60°-40°=80°,

故選B.【點(diǎn)睛】主要考查了平行線的性質(zhì)以及多邊形內(nèi)角和定理以及翻折變換的性質(zhì),得出∠FMN=∠BMN,∠FNM=∠MNB是解題關(guān)鍵.5、C【解析】

原式通分并利用同分母分式的減法法則計(jì)算,即可得到結(jié)果.【詳解】解:==,故選:C.【點(diǎn)睛】此題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.6、A【解析】

根據(jù)∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進(jìn)而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點(diǎn)睛】此題考查了圓周角的性質(zhì)與等腰三角形的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.7、C【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】35000納米=35000×10-9米=3.5×10-5米.故選C.【點(diǎn)睛】此題主要考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.8、A【解析】

通過題意先計(jì)算順流行駛的速度為26+2=28千米/時(shí),逆流行駛的速度為:26-2=24千米/時(shí).根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時(shí)”,得出等量關(guān)系,據(jù)此列出方程即可.【詳解】解:設(shè)A港和B港相距x千米,可得方程:故選:A.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出一元一次方程,抓住關(guān)鍵描述語,找到等量關(guān)系是解決問題的關(guān)鍵.順?biāo)俣?水流速度+靜水速度,逆水速度=靜水速度-水流速度.9、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點(diǎn)睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.10、B【解析】

根據(jù)相似三角形的判定方法一一判斷即可.【詳解】解:因?yàn)橹杏幸粋€(gè)角是135°,選項(xiàng)中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點(diǎn)睛】本題考查相似三角形的性質(zhì),解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題,屬于中考常考題型.二、填空題(共7小題,每小題3分,滿分21分)11、±4【解析】

根據(jù)平方差公式展開左邊即可得出答案.【詳解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案為:±4.【點(diǎn)睛】本題考查的平方差公式:.12、40°【解析】

由∠A=30°,∠APD=70°,利用三角形外角的性質(zhì),即可求得∠C的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠B的度數(shù).【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對的圓周角,∴∠B=∠C=40°.故答案為40°.【點(diǎn)睛】此題考查了圓周角定理與三角形外角的性質(zhì).此題難度不大,解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等定理的應(yīng)用.13、1.【解析】試題解析:連接OE,如下圖所示,則:OE=OA=R,∵AB是⊙O的直徑,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考點(diǎn):1.垂徑定理;2.解直角三角形.14、3:2【解析】因?yàn)镈E∥BC,所以,因?yàn)镋F∥AB,所以,所以,故答案為:3:2.15、15或255°【解析】如下圖,設(shè)直線DC′與AB相交于點(diǎn)E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當(dāng)DC′∥BC時(shí),旋轉(zhuǎn)角=15°;同理,當(dāng)DC′′∥BC時(shí),旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當(dāng)旋轉(zhuǎn)角=15°或255°時(shí),DC′//BC.故答案為:15°或255°.16、.【解析】

圓錐的底面半徑為40cm,則底面圓的周長是80πcm,圓錐的底面周長等于側(cè)面展開圖的扇形弧長,即側(cè)面展開圖的扇形弧長是80πcm,母線長為90cm即側(cè)面展開圖的扇形的半徑長是90cm.根據(jù)弧長公式即可計(jì)算.【詳解】根據(jù)弧長的公式l=得到:

80π=,

解得n=160度.

側(cè)面展開圖的圓心角為160度.故答案為160°.17、【解析】

設(shè)AB=x,利用△BCD∽△BAC,得=,列出方程即可解決問題.【詳解】∵△BCD∽△BAC,∴=,設(shè)AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴==,∴CD=.故答案為【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是利用△BCD∽△BAC解答.三、解答題(共7小題,滿分69分)18、(1)的長為50m;(2)冬至日20層包括20層以下會(huì)受到擋光的影響,春分日6層包括6層以下會(huì)受到擋光的影響.【解析】

如圖,作于M,于則,設(shè)想辦法構(gòu)建方程即可解決問題.求出AC,AD,分兩種情形解決問題即可.【詳解】解:如圖,作于M,于則,設(shè).在中,,在中,,,,,的長為50m.由可知:,,,,,冬至日20層包括20層以下會(huì)受到擋光的影響,春分日6層包括6層以下會(huì)受到擋光的影響.【點(diǎn)睛】考查解直角三角形的應(yīng)用,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考常考題型.19、(1)見解析;(2).【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OCB=∠B,∠OCB=∠F,根據(jù)垂徑定理得到OF⊥BC,根據(jù)余角的性質(zhì)得到∠OCF=90°,于是得到結(jié)論;

(2)過D作DH⊥AB于H,根據(jù)三角形的中位線的想知道的OD=AC,根據(jù)平行四邊形的性質(zhì)得到DF=AC,設(shè)OD=x,得到AC=DF=2x,根據(jù)射影定理得到CD=x,求得BD=x,根據(jù)勾股定理得到AD=x,于是得到結(jié)論.【詳解】解:(1)連接OC,

∵OC=OB,

∴∠OCB=∠B,

∵∠B=∠F,

∴∠OCB=∠F,

∵D為BC的中點(diǎn),

∴OF⊥BC,

∴∠F+∠FCD=90°,

∴∠OCB+∠FCD=90°,

∴∠OCF=90°,

∴CF為⊙O的切線;

(2)過D作DH⊥AB于H,

∵AO=OB,CD=DB,

∴OD=AC,

∵四邊形ACFD是平行四邊形,

∴DF=AC,

設(shè)OD=x,

∴AC=DF=2x,

∵∠OCF=90°,CD⊥OF,

∴CD2=OD?DF=2x2,

∴CD=x,

∴BD=x,

∴AD=x,

∵OD=x,BD=x,

∴OB=x,

∴DH=x,

∴sin∠BAD==.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),平行四邊形的性質(zhì),垂徑定理,射影定理,勾股定理,三角函數(shù)的定義,正確的作出輔助線是解題的關(guān)鍵.20、見解析【解析】試題分析:首先根據(jù)旋轉(zhuǎn)的性質(zhì),找到兩組對應(yīng)點(diǎn),連接這兩組對應(yīng)點(diǎn);然后作連接成的兩條線段的垂直平分線,兩垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心,據(jù)此解答即可.解:如圖所示,點(diǎn)P即為所求作的旋轉(zhuǎn)中心.21、(1)a+b的值為2;(2)a的值為3,b|a|的值為3;(1)b比a大27.1.【解析】

(1)根據(jù)數(shù)軸即可得到a,b數(shù)值,即可得出結(jié)果.(2)由B點(diǎn)不動(dòng),點(diǎn)A向左移動(dòng)1個(gè)單位長,可得a=3,b=2,即可求解.(1)點(diǎn)A不動(dòng),點(diǎn)B向右移動(dòng)15.1個(gè)單位長,所以a=10,b=17.1,再b-a即可求解.【詳解】(1)由圖可知:a=10,b=2,∴a+b=2故a+b的值為2.(2)由B點(diǎn)不動(dòng),點(diǎn)A向左移動(dòng)1個(gè)單位長,可得a=3,b=2∴b|a|=b+a=23=3故a的值為3,b|a|的值為3.(1)∵點(diǎn)A不動(dòng),點(diǎn)B向右移動(dòng)15.1個(gè)單位長∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【點(diǎn)睛】本題主要考查了數(shù)軸,關(guān)鍵在于數(shù)形結(jié)合思想.22、見解析【解析】

(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論