河北省秦皇島市撫寧縣2022年中考數(shù)學(xué)全真模擬試卷含解析_第1頁
河北省秦皇島市撫寧縣2022年中考數(shù)學(xué)全真模擬試卷含解析_第2頁
河北省秦皇島市撫寧縣2022年中考數(shù)學(xué)全真模擬試卷含解析_第3頁
河北省秦皇島市撫寧縣2022年中考數(shù)學(xué)全真模擬試卷含解析_第4頁
河北省秦皇島市撫寧縣2022年中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北省秦皇島市撫寧縣2022年中考數(shù)學(xué)全真模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長為半徑畫弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點(diǎn)P.若點(diǎn)P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=12.一組數(shù)據(jù):6,3,4,5,7的平均數(shù)和中位數(shù)分別是()A.5,5 B.5,6 C.6,5 D.6,63.如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點(diǎn)P2018的坐標(biāo)為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)4.關(guān)于x的一元二次方程x2+2x+k+1=0的兩個(gè)實(shí)根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.5.已知點(diǎn)A(0,﹣4),B(8,0)和C(a,﹣a),若過點(diǎn)C的圓的圓心是線段AB的中點(diǎn),則這個(gè)圓的半徑的最小值是()A. B. C. D.26.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結(jié)論有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)7.《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得()A.B.C.D.8.下面四個(gè)幾何體:其中,俯視圖是四邊形的幾何體個(gè)數(shù)是()A.1 B.2 C.3 D.49.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經(jīng)過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認(rèn)為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁10.如圖,在中,D、E分別在邊AB、AC上,,交AB于F,那么下列比例式中正確的是A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點(diǎn)B,D在AC的兩側(cè),連接BD,交AC于點(diǎn)O,取AC,BD的中點(diǎn)E,F(xiàn),連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.12.關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是________.13.分解因:=______________________.14.對于任意實(shí)數(shù)a、b,定義一種運(yùn)算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據(jù)上述的定義解決問題:若不等式3※x<1,則不等式的正整數(shù)解是_____.15.如圖,O是矩形ABCD的對角線AC的中點(diǎn),M是AD的中點(diǎn),若AB=6,AD=8,則四邊形ABOM的周長為_____.16.如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,則∠CDA=°.三、解答題(共8題,共72分)17.(8分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:(1)填空:樣本中的總?cè)藬?shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計(jì)圖中“騎自行車”所在扇形的圓心角為度;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?18.(8分)已知關(guān)于的方程有兩個(gè)實(shí)數(shù)根.求的取值范圍;若,求的值;19.(8分)已知,拋物線(為常數(shù)).(1)拋物線的頂點(diǎn)坐標(biāo)為(,)(用含的代數(shù)式表示);(2)若拋物線經(jīng)過點(diǎn)且與圖象交點(diǎn)的縱坐標(biāo)為3,請?jiān)趫D1中畫出拋物線的簡圖,并求的函數(shù)表達(dá)式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標(biāo)軸,,若拋物線經(jīng)過兩點(diǎn),且矩形在其對稱軸的左側(cè),則對角線的最小值是.20.(8分)如圖,平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3),點(diǎn)B(,0),連接AB,若對于平面內(nèi)一點(diǎn)C,當(dāng)△ABC是以AB為腰的等腰三角形時(shí),稱點(diǎn)C是線段AB的“等長點(diǎn)”.(1)在點(diǎn)C1(﹣2,3+2),點(diǎn)C2(0,﹣2),點(diǎn)C3(3+,﹣)中,線段AB的“等長點(diǎn)”是點(diǎn)________;(2)若點(diǎn)D(m,n)是線段AB的“等長點(diǎn)”,且∠DAB=60°,求點(diǎn)D的坐標(biāo);(3)若直線y=kx+3k上至少存在一個(gè)線段AB的“等長點(diǎn)”,求k的取值范圍.21.(8分)計(jì)算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點(diǎn)C、D分別落在點(diǎn)M、N的位置,發(fā)現(xiàn)∠EFM=2∠BFM,求∠EFC的度數(shù).22.(10分)已知拋物線y=﹣x2﹣4x+c經(jīng)過點(diǎn)A(2,0).(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);(2)若點(diǎn)B(m,n)是拋物線上的一動點(diǎn),點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C.①若B、C都在拋物線上,求m的值;②若點(diǎn)C在第四象限,當(dāng)AC2的值最小時(shí),求m的值.23.(12分)某廠按用戶的月需求量(件)完成一種產(chǎn)品的生產(chǎn),其中.每件的售價(jià)為18萬元,每件的成本(萬元)是基礎(chǔ)價(jià)與浮動價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動價(jià)與月需求量(件)成反比.經(jīng)市場調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).月份(月)

1

2

成本(萬元/件)

11

12

需求量(件/月)

120

100

(1)求與滿足的關(guān)系式,請說明一件產(chǎn)品的利潤能否是12萬元;(2)求,并推斷是否存在某個(gè)月既無盈利也不虧損;(3)在這一年12個(gè)月中,若第個(gè)月和第個(gè)月的利潤相差最大,求.24.一個(gè)不透明的袋子中裝有3個(gè)標(biāo)號分別為1、2、3的完全相同的小球,隨機(jī)地摸出一個(gè)小球不放回,再隨機(jī)地摸出一個(gè)小球.采用樹狀圖或列表法列出兩次摸出小球出現(xiàn)的所有可能結(jié)果;求摸出的兩個(gè)小球號碼之和等于4的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:根據(jù)作圖方法可得點(diǎn)P在第二象限角平分線上,則P點(diǎn)橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.2、A【解析】試題分析:根據(jù)平均數(shù)的定義列式計(jì)算,再根據(jù)找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù)解答.平均數(shù)為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數(shù)為:1.故選A.考點(diǎn):中位數(shù);算術(shù)平均數(shù).3、D【解析】

根據(jù)題意可以求得P1,點(diǎn)P2,點(diǎn)P3的坐標(biāo),從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標(biāo),本題得以解決.【詳解】解:由題意可得,

點(diǎn)P1(1,1),點(diǎn)P2(3,-1),點(diǎn)P3(5,1),

∴P2018的橫坐標(biāo)為:2×2018-1=4035,縱坐標(biāo)為:-1,

即P2018的坐標(biāo)為(4035,-1),

故選:D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)變化規(guī)律,解答本題的關(guān)鍵是發(fā)現(xiàn)各點(diǎn)的變化規(guī)律,求出相應(yīng)的點(diǎn)的坐標(biāo).4、D【解析】試題分析:根據(jù)根的判別式和根與系數(shù)的關(guān)系列出不等式,求出解集.解:∵關(guān)于x的一元二次方程x2+2x+k+1=0有兩個(gè)實(shí)根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點(diǎn)評:本題考查了根的判別式、根與系數(shù)的關(guān)系,在數(shù)軸上找到公共部分是解題的關(guān)鍵.5、B【解析】

首先求得AB的中點(diǎn)D的坐標(biāo),然后求得經(jīng)過點(diǎn)D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點(diǎn)坐標(biāo),再求得交點(diǎn)與D之間的距離即可.【詳解】AB的中點(diǎn)D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點(diǎn)的坐標(biāo)是(3,-3).則這個(gè)圓的半徑的最小值是:=.

故選:B【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.6、B【解析】

①觀察圖象可知a<0,b>0,c>0,由此即可判定①;②當(dāng)x=﹣1時(shí),y=a﹣b+c由此可判定②;③由對稱知,當(dāng)x=2時(shí),函數(shù)值大于0,即y=4a+2b+c>0,由此可判定③;④當(dāng)x=3時(shí)函數(shù)值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤當(dāng)x=1時(shí),y的值最大.此時(shí),y=a+b+c,當(dāng)x=n時(shí),y=an2+bn+c,由此即可判定⑤.【詳解】①由圖象可知:a<0,b>0,c>0,abc<0,故此選項(xiàng)錯誤;②當(dāng)x=﹣1時(shí),y=a﹣b+c<0,即b>a+c,故此選項(xiàng)錯誤;③由對稱知,當(dāng)x=2時(shí),函數(shù)值大于0,即y=4a+2b+c>0,故此選項(xiàng)正確;④當(dāng)x=3時(shí)函數(shù)值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此選項(xiàng)正確;⑤當(dāng)x=1時(shí),y的值最大.此時(shí),y=a+b+c,而當(dāng)x=n時(shí),y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此選項(xiàng)正確.∴③④⑤正確.故選B.【點(diǎn)睛】本題主要考查了拋物線的圖象與二次函數(shù)系數(shù)之間的關(guān)系,熟知拋物線的圖象與二次函數(shù)系數(shù)之間的關(guān)系是解決本題的關(guān)鍵.7、D【解析】

根據(jù)題意可得等量關(guān)系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據(jù)等量關(guān)系列出方程組即可.【詳解】設(shè)每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.8、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點(diǎn):簡單幾何體的三視圖9、A【解析】

根據(jù)方差的概念進(jìn)行解答即可.【詳解】由題意可知甲的方差最小,則應(yīng)該選擇甲.故答案為A.【點(diǎn)睛】本題考查了方差,解題的關(guān)鍵是掌握方差的定義進(jìn)行解題.10、C【解析】

根據(jù)平行線分線段成比例定理和相似三角形的性質(zhì)找準(zhǔn)線段的對應(yīng)關(guān)系,對各選項(xiàng)分析判斷.【詳解】A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本選項(xiàng)錯誤;B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項(xiàng)錯誤;C、∵EF∥CD,DE∥BC,∴,,∴,故本選項(xiàng)正確;D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項(xiàng)錯誤.故選C.【點(diǎn)睛】本題考查了平行線分線段成比例的運(yùn)用及平行于三角形一邊的直線截其它兩邊,所得的新三角形與原三角形相似的定理的運(yùn)用,在解答時(shí)尋找對應(yīng)線段是關(guān)?。?、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、.【解析】

先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質(zhì)得BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD=,BF=BD=,EF==.【詳解】∵∠ABC=∠ADC,∴A,B,C,D四點(diǎn)共圓,∴AC為直徑,∵E為AC的中點(diǎn),∴E為此圓圓心,∵F為弦BD中點(diǎn),∴EF⊥BD,連接BE,∴BE=AC===;作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,在△ADM和△CDN中,,∴△ADM≌△CDN(AAS),∴AM=CN,DM=DN,∵∠DMB=∠DNC=∠ABC=90°,∴四邊形BNDM為矩形,又∵DM=DN,∴矩形BNDM為正方形,∴BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,∴12-x=5+x,x=,BN=,∵BD為正方形BNDM的對角線,∴BD=BN=,BF=BD=,∴EF===.故答案為.【點(diǎn)睛】本題考查了正方形的性質(zhì)與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與全等三角形的性質(zhì)與應(yīng)用.12、b<9【解析】

由方程有兩個(gè)不相等的實(shí)數(shù)根結(jié)合根的判別式,可得出,解之即可得出實(shí)數(shù)b的取值范圍.【詳解】解:方程有兩個(gè)不相等的實(shí)數(shù)根,

,

解得:.【點(diǎn)睛】本題考查的知識點(diǎn)是根的判別式,解題關(guān)鍵是牢記“當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”.13、(x-2y)(x-2y+1)【解析】

根據(jù)所給代數(shù)式第一、二、五項(xiàng)一組,第三、四項(xiàng)一組,分組分解后再提公因式即可分解.【詳解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)14、2【解析】【分析】根據(jù)新定義可得出關(guān)于x的一元一次不等式,解之取其中的正整數(shù)即可得出結(jié)論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數(shù),∴x=2,故答案為:2.【點(diǎn)睛】本題考查一元一次不等式的整數(shù)解以及實(shí)數(shù)的運(yùn)算,通過解不等式找出x<是解題的關(guān)鍵.15、1.【解析】

根據(jù)矩形的性質(zhì),直角三角形斜邊中線性質(zhì),三角形中位線性質(zhì)求出BO、OM、AM即可解決問題.【詳解】解:∵四邊形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四邊形ABOM的周長為AB+OB+OM+AM=6+5+3+4=1.故答案為:1.【點(diǎn)睛】本題看成矩形的性質(zhì)、三角形中位線定理、直角三角形斜邊中線性質(zhì)等知識,解題的關(guān)鍵是靈活應(yīng)用中線知識解決問題,屬于中考常考題型.16、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點(diǎn):切線的性質(zhì).三、解答題(共8題,共72分)17、(1)80,20,72;(2)16,補(bǔ)圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【解析】試題分析:(1)用乘公交車的人數(shù)除以所占的百分比,計(jì)算即可求出總?cè)藬?shù),再用總?cè)藬?shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計(jì)算即可得解:樣本中的總?cè)藬?shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計(jì)圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可.(3)設(shè)原來開私家車的人中有x人改為騎自行車,表示出改后騎自行車的人數(shù)和開私家車的人數(shù),列式不等式,求解即可.試題解析:解:(1)80,20,72.(2)騎自行車的人數(shù)為:80×20%=16人,補(bǔ)全統(tǒng)計(jì)圖如圖所示;(3)設(shè)原來開私家車的人中有x人改為騎自行車,由題意得,1580答:原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).考點(diǎn):1.條形統(tǒng)計(jì)圖;2.扇形統(tǒng)計(jì)圖;3.頻數(shù)、頻率和總量的關(guān)系;4.一元一次不等式的應(yīng)用.18、(1);(2)k=-3【解析】

(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當(dāng)x1+x2≥0時(shí),則有x1+x2=x1·x2-1,即2(k-1)=k2-1;②當(dāng)x1+x2<0時(shí),則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【詳解】解:(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當(dāng)x1+x2≥0時(shí),則有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合題意,舍去②當(dāng)x1+x2<0時(shí),則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵∴k=-3綜合①、②可知k=-3【點(diǎn)睛】一元二次方程根與系數(shù)關(guān)系,根判別式.19、(1);(2)圖象見解析,或;(3)【解析】

(1)將拋物線的解析式配成頂點(diǎn)式,即可得出頂點(diǎn)坐標(biāo);(2)根據(jù)拋物線經(jīng)過點(diǎn)M,用待定系數(shù)法求出拋物線的解析式,即可得出圖象,然后將縱坐標(biāo)3代入拋物線的解析式中,求出橫坐標(biāo),然后將點(diǎn)再代入反比例函數(shù)的表達(dá)式中即可求出反比例函數(shù)的表示式;(3)設(shè)出A的坐標(biāo),表示出C,D的坐標(biāo),得到CD的長度,根據(jù)題意找到CD的最小值,因?yàn)锳D的長度不變,所以當(dāng)CD最小時(shí),對角線AC最小,則答案可求.【詳解】解:(1),拋物線的頂點(diǎn)的坐標(biāo)為.故答案為:(2)將代入拋物線的解析式得:解得:,拋物線的解析式為.拋物線的大致圖象如圖所示:將代入得:,解得:或拋物線與反比例函數(shù)圖象的交點(diǎn)坐標(biāo)為或.將代入得:,.將代入得:,.綜上所述,反比例函數(shù)的表達(dá)式為或.(3)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,的坐標(biāo)為.的長隨的增大而減?。匦卧谄鋵ΨQ軸的左側(cè),拋物線的對稱軸為,當(dāng)時(shí),的長有最小值,的最小值.的長度不變,當(dāng)最小時(shí),有最小值.的最小值故答案為:.【點(diǎn)睛】本題主要考查二次函數(shù),反比例函數(shù)與幾何綜合,掌握二次函數(shù),反比例函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.20、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】

(1)直接利用線段AB的“等長點(diǎn)”的條件判斷;(2)分兩種情況討論,利用對稱性和垂直的性質(zhì)即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時(shí),如圖2所示,利用相似三角形的性質(zhì)即可求出結(jié)論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點(diǎn)C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長點(diǎn)”,∵點(diǎn)C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長點(diǎn)”,∵點(diǎn)C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長點(diǎn)”;故答案為C1,C3;(2)如圖1,在Rt△AOB中,OA=3,OB=,∴AB=2,tan∠OAB==,∴∠OAB=30°,當(dāng)點(diǎn)D在y軸左側(cè)時(shí),∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵點(diǎn)D(m,n)是線段AB的“等長點(diǎn)”,∴AD=AB,∴D(﹣,0),∴m=,n=0,當(dāng)點(diǎn)D在y軸右側(cè)時(shí),∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵點(diǎn)D(m,n)是線段AB的“等長點(diǎn)”,∴AD=AB=2,∴m=2;∴D(,3)(3)如圖2,∵直線y=kx+3k=k(x+3),∴直線y=kx+3k恒過一點(diǎn)P(﹣3,0),∴在Rt△AOP中,OA=3,OP=3,∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,當(dāng)PF與⊙B相切時(shí)交y軸于F,∴PA切⊙B于A,∴點(diǎn)F就是直線y=kx+3k與⊙B的切點(diǎn),∴F(0,﹣3),∴3k=﹣3,∴k=﹣,當(dāng)直線y=kx+3k與⊙A相切時(shí)交y軸于G切點(diǎn)為E,∴∠AEG=∠OPG=90°,∴△AEG∽△POG,∴,∴=,解得:k=或k=(舍去)∵直線y=kx+3k上至少存在一個(gè)線段AB的“等長點(diǎn)”,∴﹣≤k≤,【點(diǎn)睛】此題是一次函數(shù)綜合題,主要考查了新定義,銳角三角函數(shù),直角三角形的性質(zhì),等腰三角形的性質(zhì),對稱性,解(1)的關(guān)鍵是理解新定義,解(2)的關(guān)鍵是畫出圖形,解(3)的關(guān)鍵是判斷出直線和圓A,B相切時(shí)是分界點(diǎn).21、(1)﹣10;(2)∠EFC=72°.【解析】

(1)原式利用乘方的意義,立方根定義,乘除法則及家減法法則計(jì)算即可;(2)根據(jù)折疊的性質(zhì)得到一對角相等,再由已知角的關(guān)系求出結(jié)果即可.【詳解】(1)原式=﹣1﹣18+9=﹣10;(2)由折疊得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴設(shè)∠EFM=∠EFC=x,則有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,則∠EFC=72°.【點(diǎn)睛】本題考查了實(shí)數(shù)的性質(zhì)及平行線的性質(zhì),解題的關(guān)鍵是熟練掌握實(shí)數(shù)的運(yùn)算法則及平行線的性質(zhì).22、(1)拋物線解析式為y=﹣x2﹣4x+12,頂點(diǎn)坐標(biāo)為(﹣2,16);(2)①m=2或m=﹣2;②m的值為.【解析】分析:(1)把點(diǎn)A(2,0)代入拋物線y=﹣x2﹣4x+c中求得c的值,即可得拋物線的解析式,根據(jù)拋物線的解析式求得拋物線的頂點(diǎn)坐標(biāo)即可;(2)①由B(m,n)在拋物線上可得﹣m2﹣4m+12=n,再由點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C,可得點(diǎn)C的坐標(biāo)為(﹣m,﹣n),又因C落在拋物線上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知點(diǎn)C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由拋物線頂點(diǎn)坐標(biāo)為(﹣2,16),即可得0<n≤16,因?yàn)辄c(diǎn)B在拋物線上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以當(dāng)n=時(shí),AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可確定m的值.詳解:(1)∵拋物線y=﹣x2﹣4x+c經(jīng)過點(diǎn)A(2,0),∴﹣4﹣8+c=0,即c=12,∴拋物線解析式為y=﹣x2﹣4x+12=﹣(x+2)2+16,則頂點(diǎn)坐標(biāo)為(﹣2,16);(2)①由B(m,n)在拋物線上可得:﹣m2﹣4m+12=n,∵點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C,∴C(﹣m,﹣n),∵C落在拋物線上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵點(diǎn)C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論