湖北省來鳳縣2022年中考數(shù)學(xué)考前最后一卷含解析_第1頁
湖北省來鳳縣2022年中考數(shù)學(xué)考前最后一卷含解析_第2頁
湖北省來鳳縣2022年中考數(shù)學(xué)考前最后一卷含解析_第3頁
湖北省來鳳縣2022年中考數(shù)學(xué)考前最后一卷含解析_第4頁
湖北省來鳳縣2022年中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省來鳳縣2022年中考數(shù)學(xué)考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,△ABC是⊙O的內(nèi)接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°2.我國古代數(shù)學(xué)名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設(shè)大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.3.下列調(diào)查中,最適合采用全面調(diào)查(普查)方式的是()A.對(duì)重慶市初中學(xué)生每天閱讀時(shí)間的調(diào)查B.對(duì)端午節(jié)期間市場(chǎng)上粽子質(zhì)量情況的調(diào)查C.對(duì)某批次手機(jī)的防水功能的調(diào)查D.對(duì)某校九年級(jí)3班學(xué)生肺活量情況的調(diào)查4.在一組數(shù)據(jù):1,2,4,5中加入一個(gè)新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小5.在實(shí)數(shù)|﹣3|,﹣2,0,π中,最小的數(shù)是()A.|﹣3| B.﹣2 C.0 D.π6.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A、B的坐標(biāo)分別為(,0),(0,1),把Rt△AOB沿著AB對(duì)折得到Rt△AO′B,則點(diǎn)O′的坐標(biāo)為()A. B. C. D.7.小亮家與姥姥家相距24km,小亮8:00從家出發(fā),騎自行車去姥姥家.媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標(biāo)系中,小亮和媽媽的行進(jìn)路程s(km)與時(shí)間t(h)的函數(shù)圖象如圖所示.根據(jù)圖象得出下列結(jié)論,其中錯(cuò)誤的是()A.小亮騎自行車的平均速度是12km/hB.媽媽比小亮提前0.5h到達(dá)姥姥家C.媽媽在距家12km處追上小亮D.9:30媽媽追上小亮8.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.69.實(shí)數(shù)a,b,c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c10.-5的倒數(shù)是A. B.5 C.- D.-5二、填空題(共7小題,每小題3分,滿分21分)11.釣魚島周圍海域面積約為170000平方千米,170000用科學(xué)記數(shù)法表示為______.12.如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),延長連心線O1O2交⊙O2于點(diǎn)P,聯(lián)結(jié)PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.13.如圖,AB是⊙O的直徑,點(diǎn)E是的中點(diǎn),連接AF交過E的切線于點(diǎn)D,AB的延長線交該切線于點(diǎn)C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.14.如圖,在正方形ABCD中,等邊三角形AEF的頂點(diǎn)E,F(xiàn)分別在邊BC和CD上,則∠AEB=__________.15.某自然保護(hù)區(qū)為估計(jì)該地區(qū)一種珍稀鳥類的數(shù)量,先捕捉了20只,給它們做上標(biāo)記后放回,過一段時(shí)間待它們完全混合于同類后又捕捉了20只,發(fā)現(xiàn)其中有4只帶有標(biāo)記,從而估計(jì)該地區(qū)此種鳥類的數(shù)量大約有______只16.a(chǎn)(a+b)﹣b(a+b)=_____.17.已知反比例函數(shù)的圖像經(jīng)過點(diǎn),那么的值是__.三、解答題(共7小題,滿分69分)18.(10分)先化簡(jiǎn),后求值:a2?a4﹣a8÷a2+(a3)2,其中a=﹣1.19.(5分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C為圓心,R為半徑所作的圓與斜邊AB只有一個(gè)公共點(diǎn),則R的取值范圍是多少?20.(8分)一天晚上,李明利用燈光下的影子長來測(cè)量一路燈D的高度.如圖,當(dāng)在點(diǎn)A處放置標(biāo)桿時(shí),李明測(cè)得直立的標(biāo)桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處放置同一個(gè)標(biāo)桿,測(cè)得直立標(biāo)桿高BN的影子恰好是線段AB,并測(cè)得AB=1.2m,已知標(biāo)桿直立時(shí)的高為1.8m,求路燈的高CD的長.21.(10分)已知:如圖,在半徑為2的扇形中,°,點(diǎn)C在半徑OB上,AC的垂直平分線交OA于點(diǎn)D,交弧AB于點(diǎn)E,聯(lián)結(jié).(1)若C是半徑OB中點(diǎn),求的正弦值;(2)若E是弧AB的中點(diǎn),求證:;(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時(shí),求CD的長.22.(10分)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).(1)求拋物線解析式及頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.23.(12分)在一次數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們到操場(chǎng)上測(cè)量旗桿的高度,然后回來交流各自的測(cè)量方法.小芳的測(cè)量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時(shí)目測(cè)旗桿頂部A與竹竿頂部E恰好在同一直線上,又測(cè)得C、D兩點(diǎn)的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認(rèn)為這種測(cè)量方法是否可行?請(qǐng)說明理由.24.(14分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點(diǎn)A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)BP與CP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對(duì)稱軸交于D點(diǎn),那么,在平移后的拋物線的對(duì)稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說明理由.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】

由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內(nèi)接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點(diǎn)睛】本題考查了圓周角定理,熟練運(yùn)用圓周角定理是解決問題的關(guān)鍵.2、C【解析】

設(shè)大馬有x匹,小馬有y匹,根據(jù)題意可得等量關(guān)系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程組即可.【詳解】解:設(shè)大馬有x匹,小馬有y匹,由題意得:,故選C.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.3、D【解析】

A、對(duì)重慶市初中學(xué)生每天閱讀時(shí)間的調(diào)查,調(diào)查范圍廣適合抽樣調(diào)查,故A錯(cuò)誤;B、對(duì)端午節(jié)期間市場(chǎng)上粽子質(zhì)量情況的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故B錯(cuò)誤;C、對(duì)某批次手機(jī)的防水功能的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故C錯(cuò)誤;D、對(duì)某校九年級(jí)3班學(xué)生肺活量情況的調(diào)查,人數(shù)較少,適合普查,故D正確;故選D.4、D【解析】

根據(jù)中位數(shù)和方差的定義分別計(jì)算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點(diǎn)睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.5、B【解析】

直接利用利用絕對(duì)值的性質(zhì)化簡(jiǎn),進(jìn)而比較大小得出答案.【詳解】在實(shí)數(shù)|-3|,-1,0,π中,|-3|=3,則-1<0<|-3|<π,故最小的數(shù)是:-1.故選B.【點(diǎn)睛】此題主要考查了實(shí)數(shù)大小比較以及絕對(duì)值,正確掌握實(shí)數(shù)比較大小的方法是解題關(guān)鍵.6、B【解析】

連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),

故選B.【點(diǎn)睛】本題考查翻折變換、坐標(biāo)與圖形的性質(zhì)、等邊三角形的判定和性質(zhì)、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是發(fā)現(xiàn)特殊三角形,利用特殊三角形解決問題.7、D【解析】

根據(jù)函數(shù)圖象可知根據(jù)函數(shù)圖象小亮去姥姥家所用時(shí)間為10﹣8=2小時(shí),進(jìn)而得到小亮騎自行車的平均速度,對(duì)應(yīng)函數(shù)圖象,得到媽媽到姥姥家所用的時(shí)間,根據(jù)交點(diǎn)坐標(biāo)確定媽媽追上小亮所用時(shí)間,即可解答.【詳解】解:A、根據(jù)函數(shù)圖象小亮去姥姥家所用時(shí)間為10﹣8=2小時(shí),∴小亮騎自行車的平均速度為:24÷2=12(km/h),故正確;B、由圖象可得,媽媽到姥姥家對(duì)應(yīng)的時(shí)間t=9.5,小亮到姥姥家對(duì)應(yīng)的時(shí)間t=10,10﹣9.5=0.5(小時(shí)),∴媽媽比小亮提前0.5小時(shí)到達(dá)姥姥家,故正確;C、由圖象可知,當(dāng)t=9時(shí),媽媽追上小亮,此時(shí)小亮離家的時(shí)間為9﹣8=1小時(shí),∴小亮走的路程為:1×12=12km,∴媽媽在距家12km出追上小亮,故正確;D、由圖象可知,當(dāng)t=9時(shí),媽媽追上小亮,故錯(cuò)誤;故選D.【點(diǎn)睛】本題考查函數(shù)圖像的應(yīng)用,從圖像中讀取關(guān)鍵信息是解題的關(guān)鍵.8、C【解析】

如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點(diǎn):勾股定理的證明.9、D【解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項(xiàng)判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項(xiàng)A不符合題意;∵c<b<0,∴b+c<0,∴選項(xiàng)B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項(xiàng)C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項(xiàng)D符合題意.故選D.點(diǎn)睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù).10、C【解析】

若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).【詳解】解:5的倒數(shù)是.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】解:將170000用科學(xué)記數(shù)法表示為:1.7×1.故答案為1.7×1.12、2【解析】

由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓的性質(zhì),解題的關(guān)鍵是熟練的掌握?qǐng)A的性質(zhì).13、【解析】

首先根據(jù)切線的性質(zhì)及圓周角定理得CE的長以及圓周角度數(shù),進(jìn)而利用銳角三角函數(shù)關(guān)系得出DE,AD的長,利用S△ADE﹣S扇形FOE=圖中陰影部分的面積求出即可.【詳解】解:連接OE,OF、EF,∵DE是切線,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=∵點(diǎn)E是弧BF的中點(diǎn),∴∠EAB=∠DAE=30°,∴F,E是半圓弧的三等分點(diǎn),∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=,∴AD=DE×tan60°=∴S△ADE∵△FOE和△AEF同底等高,∴△FOE和△AEF面積相等,∴圖中陰影部分的面積為:S△ADE﹣S扇形FOE故答案為【點(diǎn)睛】此題主要考查了扇形的面積計(jì)算以及三角形面積求法等知識(shí),根據(jù)已知得出△FOE和△AEF面積相等是解題關(guān)鍵.14、75【解析】因?yàn)椤鰽EF是等邊三角形,所以∠EAF=60°,AE=AF,因?yàn)樗倪呅蜛BCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.15、1【解析】

求出樣本中有標(biāo)記的所占的百分比,再用樣本容量除以百分比即可解答.【詳解】解:

只.

故答案為:1.【點(diǎn)睛】本題考查的是通過樣本去估計(jì)總體,總體百分比約等于樣本百分比.16、(a+b)(a﹣b).【解析】

先確定公因式為(a+b),然后提取公因式后整理即可.【詳解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).【點(diǎn)睛】本題考查了因式分解,把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個(gè)因式都不能再分解為止.17、【解析】

將點(diǎn)的坐標(biāo)代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(2,-1),

∴-1=

∴k=?;

故答案為k=?.【點(diǎn)睛】本題主要考查函數(shù)圖像上的點(diǎn)滿足其解析式,可以結(jié)合代入法進(jìn)行解答三、解答題(共7小題,滿分69分)18、1【解析】

先進(jìn)行同底數(shù)冪的乘除以及冪的乘方運(yùn)算,再合并同類項(xiàng)得到化簡(jiǎn)后的式子,將a的值代入化簡(jiǎn)后的式子計(jì)算即可.【詳解】原式=a6﹣a6+a6=a6,當(dāng)a=﹣1時(shí),原式=1.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘除以及冪的乘方運(yùn)算法則.19、R=125或R=【解析】

解:當(dāng)圓與斜邊相切時(shí),則R=125,即圓與斜邊有且只有一個(gè)公共點(diǎn),當(dāng)R=12考點(diǎn):圓與直線的位置關(guān)系.20、路燈高CD為5.1米.【解析】

根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對(duì)應(yīng)邊的比相等列出比例式求解即可.【詳解】設(shè)CD長為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經(jīng)檢驗(yàn),x=5.1是原方程的解,∴路燈高CD為5.1米.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.21、(2);(2)詳見解析;(2)當(dāng)是以CD為腰的等腰三角形時(shí),CD的長為2或.【解析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當(dāng)CD=CE時(shí),判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當(dāng)CD=DE時(shí),判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進(jìn)而得出∠DEA=∠OEA,即:點(diǎn)D和點(diǎn)O重合,即可得出結(jié)論.【詳解】(2)∵C是半徑OB中點(diǎn),∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點(diǎn),∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當(dāng)CD=CE時(shí).∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設(shè)菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當(dāng)CD=DE時(shí).∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點(diǎn)D和點(diǎn)O重合,此時(shí),點(diǎn)C和點(diǎn)B重合,∴CD=2.綜上所述:當(dāng)△DCE是以CD為腰的等腰三角形時(shí),CD的長為2或.【點(diǎn)睛】本題是圓的綜合題,主要考查了勾股定理,線段垂直平分線的性質(zhì),菱形的判定和性質(zhì),銳角三角函數(shù),作出輔助線是解答本題的關(guān)鍵.22、(1)拋物線解析式為,頂點(diǎn)為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對(duì)稱軸解析式,可用頂點(diǎn)式二次函數(shù)通式來設(shè)拋物線,然后將A、B兩點(diǎn)坐標(biāo)代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點(diǎn)的橫坐標(biāo),用拋物線的解析式求出E點(diǎn)的縱坐標(biāo),那么E點(diǎn)縱坐標(biāo)的絕對(duì)值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關(guān)系式進(jìn)而可得出S與x的函數(shù)關(guān)系式.(3)①將S=24代入S,x的函數(shù)關(guān)系式中求出x的值,即可得出E點(diǎn)的坐標(biāo)和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應(yīng)該是等腰直角三角形,即E點(diǎn)的坐標(biāo)為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點(diǎn).【詳解】(1)由拋物線的對(duì)稱軸是,可設(shè)解析式為.把A、B兩點(diǎn)坐標(biāo)代入上式,得解之,得故拋物線解析式為,頂點(diǎn)為(2)∵點(diǎn)在拋物線上,位于第四象限,且坐標(biāo)適合,∴y<0,即-y>0,-y表示點(diǎn)E到OA的距離.∵OA是的對(duì)角線,∴.因?yàn)閽佄锞€與軸的兩個(gè)交點(diǎn)是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當(dāng)S=24時(shí),即.化簡(jiǎn),得解之,得故所求的點(diǎn)E有兩個(gè),分別為E1(3,-4),E2(4,-4).點(diǎn)E1(3,-4)滿足OE=AE,所以是菱形;點(diǎn)E2(4,-4)不滿足OE=AE,所以不是菱形.②當(dāng)OA⊥EF,且OA=EF時(shí),是正方形,此時(shí)點(diǎn)E的坐標(biāo)只能是(3,-3).而坐標(biāo)為(3,-3)的點(diǎn)不在拋物線上,故不存在這樣的點(diǎn)E,使為正方形.23、這種測(cè)量方法可行,旗桿的高為21.1米.【解析】分析:根據(jù)已知得出過F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性質(zhì)得出即可.詳解:這種測(cè)量方法可行.理由如下:設(shè)旗桿高AB=x.過F作FG⊥AB于G,交CE于H(如圖).所以△AGF∽△EHF.因?yàn)镕D=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗桿的高為21.1米.點(diǎn)睛:此題主要考查了相似三角形的判定與性質(zhì),根據(jù)已知得出△AGF∽△EHF是解題關(guān)鍵.24、(1)y=x2+2x﹣3;(2)點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】

(1)設(shè)平移后拋物線的表達(dá)式為y=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論