版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省青州市2022年中考數(shù)學(xué)全真模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.“綠水青山就是金山銀山”.某工程隊(duì)承接了60萬(wàn)平方米的荒山綠化任務(wù),為了迎接雨季的到來(lái),實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了25%,結(jié)果提前30天完成了這一任務(wù).設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬(wàn)平方米,則下面所列方程中正確的是()A. B.C. D.2.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.80° D.100°3.估計(jì)的值在()A.4和5之間 B.5和6之間C.6和7之間 D.7和8之間4.上體育課時(shí),小明5次投擲實(shí)心球的成績(jī)?nèi)缦卤硭荆瑒t這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(jī)(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.05.計(jì)算x﹣2y﹣(2x+y)的結(jié)果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y6.已知關(guān)于x的一元二次方程mx2+2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是().A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>17.已知△ABC中,∠BAC=90°,用尺規(guī)過(guò)點(diǎn)A作一條直線,使其將△ABC分成兩個(gè)相似的三角形,其作法不正確的是(
)A.
B.C.
D.8.如圖,將繞直角頂點(diǎn)順時(shí)針旋轉(zhuǎn),得到,連接,若,則的度數(shù)是()A. B. C. D.9.已知關(guān)于x的一元二次方程x2+mx+n=0的兩個(gè)實(shí)數(shù)根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.210.如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對(duì)于下列各值:①線段MN的長(zhǎng);②△PAB的周長(zhǎng);③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大?。渲袝?huì)隨點(diǎn)P的移動(dòng)而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:3x3﹣12x=_____.12.如圖,在矩形ABCD中,AD=4,點(diǎn)P是直線AD上一動(dòng)點(diǎn),若滿足△PBC是等腰三角形的點(diǎn)P有且只有3個(gè),則AB的長(zhǎng)為.13.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.14.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為________.15.若一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過(guò)第一、三、四象限,則是k的值可以是_____.(寫出一個(gè)即可).16.化簡(jiǎn):x2-4x+4x17.如圖,直線,點(diǎn)A1坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫弧交x軸于點(diǎn)A2;再過(guò)點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸于點(diǎn)A3,…,按照此做法進(jìn)行下去,點(diǎn)A8的坐標(biāo)為__________.三、解答題(共7小題,滿分69分)18.(10分)2013年我國(guó)多地出現(xiàn)霧霾天氣,某企業(yè)抓住商機(jī)準(zhǔn)備生產(chǎn)空氣凈化設(shè)備,該企業(yè)決定從以下兩個(gè)投資方案中選擇一個(gè)進(jìn)行投資生產(chǎn),方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a元(a為常數(shù),且40<a<100),每件產(chǎn)品銷售價(jià)為120元,每年最多可生產(chǎn)125萬(wàn)件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本價(jià)為80元,每件產(chǎn)品銷售價(jià)為180元,每年可生產(chǎn)120萬(wàn)件,另外,年銷售x萬(wàn)件乙產(chǎn)品時(shí)需上交0.5x2萬(wàn)元的特別關(guān)稅,在不考慮其它因素的情況下:(1)分別寫出該企業(yè)兩個(gè)投資方案的年利潤(rùn)y1(萬(wàn)元)、y2(萬(wàn)元)與相應(yīng)生產(chǎn)件數(shù)x(萬(wàn)件)(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;(2)分別求出這兩個(gè)投資方案的最大年利潤(rùn);(3)如果你是企業(yè)決策者,為了獲得最大收益,你會(huì)選擇哪個(gè)投資方案?19.(5分)如圖,在中,,且,,為的中點(diǎn),于點(diǎn),連結(jié),.(1)求證:;(2)當(dāng)為何值時(shí),的值最大?并求此時(shí)的值.20.(8分)如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)C在x軸上,點(diǎn)C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個(gè)動(dòng)點(diǎn)D、E、F(不考慮與A、B、C重合),點(diǎn)D從A向B運(yùn)動(dòng),點(diǎn)E從B向C運(yùn)動(dòng),點(diǎn)F從C向A運(yùn)動(dòng),三點(diǎn)同時(shí)運(yùn)動(dòng),到終點(diǎn)結(jié)束,且速度均為1cm/s,設(shè)運(yùn)動(dòng)的時(shí)間為ts,解答下列問(wèn)題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過(guò)點(diǎn)E作EQ∥AB,交AC于點(diǎn)Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時(shí)△AEQ的面積最大?求出這個(gè)最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時(shí),平面內(nèi)是否存在一點(diǎn)P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請(qǐng)直接寫出P坐標(biāo),若不存在請(qǐng)說(shuō)明理由?21.(10分)先化簡(jiǎn),再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.22.(10分)如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).求直線AB的解析式和點(diǎn)B的坐標(biāo);求△ABP的面積(用含n的代數(shù)式表示);當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).23.(12分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時(shí),求AP的長(zhǎng);設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫出旋轉(zhuǎn)過(guò)程中EP、EQ、EC之間的數(shù)量關(guān)系.24.(14分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的度數(shù);(2)如圖2,過(guò)點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】分析:設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬(wàn)平方米,根據(jù)工作時(shí)間=工作總量÷工作效率結(jié)合提前30天完成任務(wù),即可得出關(guān)于x的分式方程.詳解:設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬(wàn)平方米,則原來(lái)每天綠化的面積為萬(wàn)平方米,依題意得:,即.故選C.點(diǎn)睛:考查了由實(shí)際問(wèn)題抽象出分式方程.找到關(guān)鍵描述語(yǔ),找到合適的等量關(guān)系是解決問(wèn)題的關(guān)鍵.2、D【解析】
根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠3=∠1,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.3、C【解析】
根據(jù),可以估算出位于哪兩個(gè)整數(shù)之間,從而可以解答本題.【詳解】解:∵即
故選:C.【點(diǎn)睛】本題考查估算無(wú)理數(shù)的大小,解題的關(guān)鍵是明確估算無(wú)理數(shù)大小的方法.4、D【解析】
解:按從小到大的順序排列小明5次投球的成績(jī):7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點(diǎn)睛】本題考查眾數(shù);中位數(shù).5、C【解析】
原式去括號(hào)合并同類項(xiàng)即可得到結(jié)果.【詳解】原式,故選:C.【點(diǎn)睛】本題主要考查了整式的加減運(yùn)算,熟練掌握去括號(hào)及合并同類項(xiàng)是解決本題的關(guān)鍵.6、A【解析】
∵一元二次方程mx2+2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故選A.【點(diǎn)睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當(dāng)△=b2﹣4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)△=b2﹣4ac=0時(shí),方程有有兩個(gè)相等的實(shí)數(shù)根;(3)當(dāng)△=b2﹣4ac<0時(shí),方程沒(méi)有實(shí)數(shù)根.7、D【解析】分析:根據(jù)過(guò)直線外一點(diǎn)作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點(diǎn)D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進(jìn)而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;A不符合題意;B、以點(diǎn)A為圓心,略小于AB的長(zhǎng)為半徑,畫弧,交線段BC兩點(diǎn),再分別以這兩點(diǎn)為圓心,大于兩交點(diǎn)間的距離為半徑畫弧,兩弧相交于一點(diǎn),過(guò)這一點(diǎn)與A點(diǎn)作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點(diǎn)D,根據(jù)圓周角定理,過(guò)AD兩點(diǎn)作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個(gè)小直角三角形,圖中的三個(gè)直角三角形式彼此相似的;C不符合題意;D、以點(diǎn)B為圓心BA的長(zhǎng)為半徑畫弧,交BC于點(diǎn)E,再以E點(diǎn)為圓心,AB的長(zhǎng)為半徑畫弧,在BC的另一側(cè)交前弧于一點(diǎn),過(guò)這一點(diǎn)及A點(diǎn)作直線,該直線不一定是BE的垂線;從而就不能保證兩個(gè)小三角形相似;D符合題意;故選D.點(diǎn)睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關(guān)鍵.8、B【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA′=45°,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠A′B′C,最后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠B=∠A′B′C.【詳解】解:∵Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故選B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.9、D【解析】
根據(jù)“一元二次方程x2+mx+n=0的兩個(gè)實(shí)數(shù)根分別為x1=2,x2=4”,結(jié)合根與系數(shù)的關(guān)系,分別列出關(guān)于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【詳解】解:根據(jù)題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,正確掌握根與系數(shù)的關(guān)系是解決問(wèn)題的關(guān)鍵.10、B【解析】試題分析:①、MN=AB,所以MN的長(zhǎng)度不變;②、周長(zhǎng)C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個(gè)具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點(diǎn):動(dòng)點(diǎn)問(wèn)題,平行線間的距離處處相等,三角形的中位線二、填空題(共7小題,每小題3分,滿分21分)11、3x(x+2)(x﹣2)【解析】
先提公因式3x,然后利用平方差公式進(jìn)行分解即可.【詳解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案為3x(x+2)(x﹣2).【點(diǎn)睛】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對(duì)多項(xiàng)式進(jìn)行因式分解,一般來(lái)說(shuō),如果可以先提取公因式的要先提取公因式,再考慮運(yùn)用公式法分解.12、1.【解析】試題分析:如圖,當(dāng)AB=AD時(shí),滿足△PBC是等腰三角形的點(diǎn)P有且只有3個(gè),△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點(diǎn):矩形的性質(zhì);等腰三角形的性質(zhì);勾股定理;分類討論.13、2【解析】
解:這組數(shù)據(jù)的平均數(shù)為2,
有(2+2+0-2+x+2)=2,
可求得x=2.
將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個(gè)數(shù)是2與2,
其平均數(shù)即中位數(shù)是(2+2)÷2=2.
故答案是:2.14、1-1.【解析】
將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進(jìn)而得出△CEF為直角三角形,通過(guò)解直角三角形求出BC的長(zhǎng)度以及證明全等找出DE=FE,設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,取CF的中點(diǎn)G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過(guò)勾股定理找出方程是解題的關(guān)鍵.15、1【解析】
由一次函數(shù)圖象經(jīng)過(guò)第一、三、四象限,可知k>0,﹣1<0,在范圍內(nèi)確定k的值即可.【詳解】解:因?yàn)橐淮魏瘮?shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過(guò)第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.【點(diǎn)睛】根據(jù)一次函數(shù)圖象所經(jīng)過(guò)的象限,可確定一次項(xiàng)系數(shù),常數(shù)項(xiàng)的值的符號(hào),從而確定字母k的取值范圍.16、﹣x-2x【解析】
直接利用分式的混合運(yùn)算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點(diǎn)睛】此題主要考查了分式的化簡(jiǎn),正確掌握運(yùn)算法則是解題關(guān)鍵.17、(128,0)【解析】
∵點(diǎn)A1坐標(biāo)為(1,0),且B1A1⊥x軸,∴B1的橫坐標(biāo)為1,將其橫坐標(biāo)代入直線解析式就可以求出B1的坐標(biāo),就可以求出A1B1的值,OA1的值,根據(jù)銳角三角函數(shù)值就可以求出∠xOB3的度數(shù),從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點(diǎn)A2、A3…的坐標(biāo)規(guī)律,最后求出A8的坐標(biāo).【詳解】點(diǎn)坐標(biāo)為(1,0),
軸
點(diǎn)的橫坐標(biāo)為1,且點(diǎn)在直線上
在中由勾股定理,得
,
在中,
.
.
.
.
故答案為.【點(diǎn)睛】本題是一道一次函數(shù)的綜合試題,也是一道規(guī)律試題,考查了直角三角形的性質(zhì),特別是所對(duì)的直角邊等于斜邊的一半的運(yùn)用,點(diǎn)的坐標(biāo)與函數(shù)圖象的關(guān)系.三、解答題(共7小題,滿分69分)18、(1)y1=(120-a)x(1≤x≤125,x為正整數(shù)),y2=100x-0.5x2(1≤x≤120,x為正整數(shù));(2)110-125a(萬(wàn)元),10(萬(wàn)元);(3)當(dāng)40<a<80時(shí),選擇方案一;當(dāng)a=80時(shí),選擇方案一或方案二均可;當(dāng)80<a<100時(shí),選擇方案二.【解析】
(1)根據(jù)題意直接得出y1與y2與x的函數(shù)關(guān)系式即可;(2)根據(jù)a的取值范圍可知y1隨x的增大而增大,可求出y1的最大值.又因?yàn)椹?.5<0,可求出y2的最大值;(3)第三問(wèn)要分兩種情況決定選擇方案一還是方案二.當(dāng)2000﹣200a>1以及2000﹣200a<1.【詳解】解:(1)由題意得:y1=(120﹣a)x(1≤x≤125,x為正整數(shù)),y2=100x﹣0.5x2(1≤x≤120,x為正整數(shù));(2)①∵40<a<100,∴120﹣a>0,即y1隨x的增大而增大,∴當(dāng)x=125時(shí),y1最大值=(120﹣a)×125=110﹣125a(萬(wàn)元)②y2=﹣0.5(x﹣100)2+10,∵a=﹣0.5<0,∴x=100時(shí),y2最大值=10(萬(wàn)元);(3)∵由110﹣125a>10,∴a<80,∴當(dāng)40<a<80時(shí),選擇方案一;由110﹣125a=10,得a=80,∴當(dāng)a=80時(shí),選擇方案一或方案二均可;由110﹣125a<10,得a>80,∴當(dāng)80<a<100時(shí),選擇方案二.考點(diǎn):二次函數(shù)的應(yīng)用.19、(1)見(jiàn)解析;(2)時(shí),的值最大,【解析】
(1)延長(zhǎng)BA、CF交于點(diǎn)G,利用可證△AFG≌△DFC得出,,根據(jù),可證出,得出,利用,,點(diǎn)是的中點(diǎn),得出,,則有,可得出,得出,即可得出結(jié)論;(2)設(shè)BE=x,則,,由勾股定理得出,,得出,求出,由二次函數(shù)的性質(zhì)得出當(dāng)x=1,即BE=1時(shí),CE2-CF2有最大值,,由三角函數(shù)定義即可得出結(jié)果.【詳解】解:(1)證明:如圖,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),∵為的中點(diǎn),∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,點(diǎn)是的中點(diǎn),∴,.∴.∴.∴.在中,,又∵,∴.∴(2)設(shè),則,∵,∴,在中,,在中,,∵,∴,∴,∴當(dāng),即時(shí),的值最大,∴.在中,【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、等腰三角形的判定與性質(zhì)等知識(shí);證明三角形全等和等腰三角形是解題的關(guān)鍵.20、(1)證明見(jiàn)解析;(2)當(dāng)t=3時(shí),△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進(jìn)而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對(duì)應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進(jìn)而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時(shí)Q的坐標(biāo)即可;(3)當(dāng)△AEQ的面積最大時(shí),D、E、F都是中點(diǎn),分兩種情形討論即可解決問(wèn)題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時(shí),AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當(dāng)t=3時(shí),△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點(diǎn)為BC的中點(diǎn),線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時(shí),可得P1(3,0),P3(6,3),當(dāng)AD為對(duì)角線時(shí),P2(0,3),綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(3,0)或(6,3)或(0,3).【點(diǎn)睛】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問(wèn)題,學(xué)會(huì)用分類討論的思想思考問(wèn)題,屬于中考?jí)狠S題.21、(x﹣y)2;2.【解析】
首先利用多項(xiàng)式的乘法法則以及多項(xiàng)式與單項(xiàng)式的除法法則計(jì)算,然后合并同類項(xiàng)即可化簡(jiǎn),然后代入數(shù)值計(jì)算即可.【詳解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,當(dāng)x=2028,y=2時(shí),原式=(2028﹣2)2=(﹣2)2=2.【點(diǎn)睛】本題考查的是整式的混合運(yùn)算,正確利用多項(xiàng)式的乘法法則以及合并同類項(xiàng)法則是解題的關(guān)鍵.22、(1)AB的解析式是y=-x+1.點(diǎn)B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標(biāo)代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標(biāo);(2)過(guò)點(diǎn)A作AM⊥PD,垂足為M,求得AM的長(zhǎng),即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點(diǎn)求解.試題解析:(1)∵y=-x+b經(jīng)過(guò)A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當(dāng)y=0時(shí),0=-x+1,解得x=3,∴點(diǎn)B(3,0).(2)過(guò)點(diǎn)A作AM⊥PD,垂足為M,則有AM=1,∵x=1時(shí),y=-x+1=,P在點(diǎn)D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點(diǎn)B(3,0),可知點(diǎn)B到直線x=1的距離為2,即△BDP的邊PD上的高長(zhǎng)為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當(dāng)S△ABP=2時(shí),n-1=2,解得n=2,∴點(diǎn)P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過(guò)點(diǎn)C作CN⊥直線x=1于點(diǎn)N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過(guò)點(diǎn)C作CF⊥x軸于點(diǎn)F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點(diǎn)C的坐標(biāo)是(3,4)或(5,2)或(3,2).考點(diǎn):一次函數(shù)綜合題.23、(1)證明見(jiàn)解析(2)(3)EP+EQ=EC【解析】
(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- yaopin 購(gòu)銷合同范例
- 產(chǎn)品合作協(xié)議合同范例
- 會(huì)務(wù)展覽合同范例
- 拍攝房屋租賃合同范例
- 2024年非漂浮型鋁漿粉項(xiàng)目可行性研究報(bào)告
- 陜西旅游烹飪職業(yè)學(xué)院《證券與投資》2023-2024學(xué)年第一學(xué)期期末試卷
- 煤炭用工合同范例
- 豐臺(tái)學(xué)校物業(yè)合同范例
- 2024年混凝土樓板施工項(xiàng)目協(xié)議范本一
- 建工集團(tuán)合同范例
- 2024年就業(yè)保障型定向委培合同3篇
- 2024預(yù)防流感課件完整版
- 2024滬粵版八年級(jí)上冊(cè)物理期末復(fù)習(xí)全冊(cè)知識(shí)點(diǎn)考點(diǎn)提綱
- 人教版2024-2025學(xué)年第一學(xué)期八年級(jí)物理期末綜合復(fù)習(xí)練習(xí)卷(含答案)
- 殘聯(lián)內(nèi)部審計(jì)計(jì)劃方案
- 2024-2030年中國(guó)漫畫行業(yè)發(fā)展趨勢(shì)與投資戰(zhàn)略研究研究報(bào)告
- 2024年大學(xué)生安全知識(shí)競(jìng)賽題庫(kù)及答案(共190題)
- 吊裝作業(yè)施工方案
- 智能工廠梯度培育行動(dòng)實(shí)施方案
- 23J916-1 住宅排氣道(一)
- 科學(xué)認(rèn)識(shí)天氣智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論