2022屆山東省菏澤市部分市縣中考數(shù)學(xué)考前最后一卷含解析_第1頁
2022屆山東省菏澤市部分市縣中考數(shù)學(xué)考前最后一卷含解析_第2頁
2022屆山東省菏澤市部分市縣中考數(shù)學(xué)考前最后一卷含解析_第3頁
2022屆山東省菏澤市部分市縣中考數(shù)學(xué)考前最后一卷含解析_第4頁
2022屆山東省菏澤市部分市縣中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022屆山東省菏澤市部分市縣中考數(shù)學(xué)考前最后一卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°2.在數(shù)軸上表示不等式組的解集,正確的是()A. B.C. D.3.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+54.下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經(jīng)過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑5.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元6.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°7.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是()A.1 B.2 C.3 D.48.為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點E為矩形ABCD邊AD的中點,在矩形ABCD的四個頂點處都有定位儀,可監(jiān)測運動員的越野進程,其中一位運動員P從點B出發(fā),沿著B﹣E﹣D的路線勻速行進,到達點D.設(shè)運動員P的運動時間為t,到監(jiān)測點的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來源是()A.監(jiān)測點A B.監(jiān)測點B C.監(jiān)測點C D.監(jiān)測點D9.甲、乙、丙三家超市為了促銷同一種定價為m元的商品,甲超市連續(xù)兩次降價20%;乙超市一次性降價40%;丙超市第一次降價30%,第二次降價10%,此時顧客要購買這種商品,最劃算的超市是()A.甲 B.乙 C.丙 D.都一樣10.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉(zhuǎn)11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.411.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°12.在以下三個圖形中,根據(jù)尺規(guī)作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知線段a=4,線段b=9,則a,b的比例中項是_____.14.在一次數(shù)學(xué)測試中,同年級人數(shù)相同的甲、乙兩個班的成績統(tǒng)計如下表:班級平均分中位數(shù)方差甲班乙班數(shù)學(xué)老師讓同學(xué)們針對統(tǒng)計的結(jié)果進行一下評估,學(xué)生的評估結(jié)果如下:這次數(shù)學(xué)測試成績中,甲、乙兩個班的平均水平相同;甲班學(xué)生中數(shù)學(xué)成績95分及以上的人數(shù)少;乙班學(xué)生的數(shù)學(xué)成績比較整齊,分化較?。鲜鲈u估中,正確的是______填序號15.如圖,在平面直角坐標系中,拋物線可通過平移變換向__________得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分(如圖所示)的面積是__________.16.計算(﹣a2b)3=__.17.如圖,正方形ABCD的邊長為,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點F,則EF的長是__________.18.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點,點B在x軸上,點B的橫坐標為,拋物線經(jīng)過A、B、C三點.點D是直線AC上方拋物線上任意一點.(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點,且S△PCD=2S△PAD,求點P的坐標;(3)如圖2,連接OD,過點A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當AM+CN的值最大時,求點D的坐標.20.(6分)(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點在BC邊上,BP=1.①特殊情形:若MP過點A,NP過點D,則=.②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉(zhuǎn),使PM交AB邊于點E,PN交AD邊于點F,當點E與點B重合時,停止旋轉(zhuǎn).在旋轉(zhuǎn)過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點E是⊙A上一動點,CF⊥CE交AD于點F.請直接寫出當△AEB為直角三角形時的值.21.(6分)計算:|﹣2|+8+(2017﹣π)0﹣4cos45°22.(8分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.23.(8分)在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.求證:四邊形BFDE是矩形;若CF=3,BF=4,DF=5,求證:AF平分∠DAB.24.(10分)計算.25.(10分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.26.(12分)小強的媽媽想在自家的院子里用竹籬笆圍一個面積為4平方米的矩形小花園,媽媽問九年級的小強至少需要幾米長的竹籬笆(不考慮接縫).小強根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗做了如下的探究.下面是小強的探究過程,請補充完整:建立函數(shù)模型:設(shè)矩形小花園的一邊長為x米,籬笆長為y米.則y關(guān)于x的函數(shù)表達式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):根據(jù)函數(shù)的表達式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點、畫函數(shù)圖象:如圖,在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點畫出該函數(shù)的圖象;觀察分析、得出結(jié)論:根據(jù)以上信息可得,當x=________時,y有最小值.由此,小強確定籬笆長至少為________米.27.(12分)如圖,在中,,是邊上的高線,平分交于點,經(jīng)過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)題意畫出相應(yīng)的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.2、C【解析】

解不等式組,再將解集在數(shù)軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關(guān)鍵.3、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點睛】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關(guān)鍵.4、D【解析】

根據(jù)切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選:D.【點睛】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關(guān)鍵.5、A【解析】

設(shè)這種商品每件進價為x元,根據(jù)題中的等量關(guān)系列方程求解.【詳解】設(shè)這種商品每件進價為x元,則根據(jù)題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應(yīng)用,解題的關(guān)鍵是確定未知數(shù),根據(jù)題中的等量關(guān)系列出正確的方程.6、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結(jié)合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關(guān)矩形折疊的問題,熟悉“矩形的四個內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關(guān)鍵.7、D【解析】

由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①∵拋物線對稱軸是y軸的右側(cè),∴ab<0,∵與y軸交于負半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③正確;④當x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【點睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.8、C【解析】試題解析:、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大先減少再增大.故選項錯誤;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大而增大,故選項錯誤;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大先減小再增大,然后再減小,選項正確;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大而減小,選項錯誤.故選.9、B【解析】

根據(jù)各超市降價的百分比分別計算出此商品降價后的價格,再進行比較即可得出結(jié)論.【詳解】解:降價后三家超市的售價是:甲為(1-20%)2m=0.64m,乙為(1-40%)m=0.6m,丙為(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此時顧客要購買這種商品最劃算應(yīng)到的超市是乙.故選:B.【點睛】此題考查了列代數(shù)式,解題的關(guān)鍵是根據(jù)題目中的數(shù)量關(guān)系列出代數(shù)式,并對代數(shù)式比較大小.10、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉(zhuǎn)角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉(zhuǎn);2.勾股定理.11、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.12、C【解析】【分析】根據(jù)角平分線的作圖方法可判斷圖1,根據(jù)圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據(jù)作圖痕跡可通過判斷三角形全等推導(dǎo)得出AD是角平分線.【詳解】圖1中,根據(jù)作圖痕跡可知AD是角平分線;圖2中,根據(jù)作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【點睛】本題考查了尺規(guī)作圖,三角形全等的判定與性質(zhì)等,熟知角平分的尺規(guī)作圖方法、全等三角形的判定與性質(zhì)是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6【解析】

根據(jù)已知線段a=4,b=9,設(shè)線段x是a,b的比例中項,列出等式,利用兩內(nèi)項之積等于兩外項之積即可得出答案.【詳解】解:∵a=4,b=9,設(shè)線段x是a,b的比例中項,∴,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案為6【點睛】本題主要考查比例線段問題,解題關(guān)鍵是利用兩內(nèi)項之積等于兩外項之積解答.14、【解析】

根據(jù)平均數(shù)、中位數(shù)和方差的意義分別對每一項進行解答,即可得出答案.【詳解】解:∵甲班的平均成績是92.5分,乙班的平均成績是92.5分,∴這次數(shù)學(xué)測試成績中,甲、乙兩個班的平均水平相同;故正確;∵甲班的中位數(shù)是95.5分,乙班的中位數(shù)是90.5分,甲班學(xué)生中數(shù)學(xué)成績95分及以上的人數(shù)多,故錯誤;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班學(xué)生的數(shù)學(xué)成績比較整齊,分化較小;故正確;上述評估中,正確的是;故答案為:.【點睛】本題考查平均數(shù)、中位數(shù)和方差,平均數(shù)表示一組數(shù)據(jù)的平均程度中位數(shù)是將一組數(shù)據(jù)從小到大或從大到小重新排列后,最中間的那個數(shù)或最中間兩個數(shù)的平均數(shù);方差是用來衡量一組數(shù)據(jù)波動大小的量.15、先向右平移2個單位再向下平移2個單位;4【解析】.平移后頂點坐標是(2,-2),利用割補法,把x軸上方陰影部分補到下方,可以得到矩形面積,面積是.16、?a6b3【解析】

根據(jù)積的乘方和冪的乘方法則計算即可.【詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【點睛】本題考查了積的乘方和冪的乘方,關(guān)鍵是掌握運算法則.17、2【解析】

設(shè)EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【詳解】設(shè)EF=x,

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,

∴BD=AB=4+4,EF=BF=x,

∴BE=x,

∵∠BAE=22.5°,

∴∠DAE=90°-22.5°=67.5°,

∴∠AED=180°-45°-67.5°=67.5°,

∴∠AED=∠DAE,

∴AD=ED,

∴BD=BE+ED=x+4+2=4+4,

解得:x=2,

即EF=2.18、1【解析】

根據(jù)題意得出△AOD∽△OCE,進而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質(zhì),正確添加輔助線,得出△AOD∽△OCE是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2﹣x+3;(2)點P的坐標為(﹣,1);(3)當AM+CN的值最大時,點D的坐標為(,).【解析】

(1)利用一次函數(shù)圖象上點的坐標特征可求出點A、C的坐標,由點B所在的位置結(jié)合點B的橫坐標可得出點B的坐標,根據(jù)點A、B、C的坐標,利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點P作PE⊥x軸,垂足為點E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進而可得出點P的坐標;(3)連接AC交OD于點F,由點到直線垂線段最短可找出當AC⊥OD時AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點D的坐標為(﹣3t,4t),利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于t的一元二次方程,解之取其負值即可得出t值,再將其代入點D的坐標即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點,∴點A的坐標為(﹣4,0),點C的坐標為(0,3).∵點B在x軸上,點B的橫坐標為,∴點B的坐標為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點P作PE⊥x軸,垂足為點E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點P的坐標為(﹣,1);(3)如圖2,連接AC交OD于點F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當點M、N、F重合時,AM+CN取最大值,過點D作DQ⊥x軸,垂足為點Q,則△DQO∽△AOC,∴,∴設(shè)點D的坐標為(﹣3t,4t).∵點D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點D的坐標為(,),故當AM+CN的值最大時,點D的坐標為(,).【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點的坐標特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點A、B、C的坐標,利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點D的坐標為(﹣3t,4t).20、(1)①特殊情形:;②類比探究:是定值,理由見解析;(2)或【解析】

(1)證明,即可求解;(2)點E與點B重合時,四邊形EBFA為矩形,即可求解;(3)分時、時,兩種情況分別求解即可.【詳解】解:(1),,故答案為;(2)點E與點B重合時,四邊形EBFA為矩形,則為定值;(3)①當時,如圖3,過點E、F分別作直線BC的垂線交于點G,H,由(1)知:,,同理,.則,則;②當時,如圖4,,則,,則,,則,故或.【點睛】本題考查的圓知識的綜合運用,涉及到解直角三角形的基本知識,其中(3),要注意分類求解,避免遺漏.21、1.【解析】

直接利用零指數(shù)冪的性質(zhì)以及特殊角的三角函數(shù)值和絕對值的性質(zhì)分別化簡得出答案.【詳解】解:原式=2+22+1﹣4×2=2+22+1﹣22=1.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.22、(1)證明見解析;(2).【解析】

(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;

(2)設(shè)圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到結(jié)果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設(shè)圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質(zhì),以及勾股定理,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.23、(1)見解析(2)見解析【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.試題分析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD.∵BE∥DF,BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【點睛】本題考查了平行四邊形的性質(zhì),利用了平行四邊形的性質(zhì),矩形的判定,等腰三角形的判定與性質(zhì),利用等腰三角形的判定與性質(zhì)得出∠DAF=∠DFA是解題關(guān)鍵.24、【解析】分析:先計算,再做除法,結(jié)果化為整式或最簡分式.詳解:.點睛:本題考查了分式的混合運算.解題過程中注意運算順序.解決本題亦可先把除法轉(zhuǎn)化成乘法,利用乘法對加法的分配律后再求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論