版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山西省高平市重點達標名校2022年中考數(shù)學模擬預測試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°2.在下面四個幾何體中,從左面看、從上面看分別得到的平面圖形是長方形、圓,這個幾何體是()A. B. C. D.3.等式成立的x的取值范圍在數(shù)軸上可表示為(
)A. B. C. D.4.下列各數(shù)中比﹣1小的數(shù)是()A.﹣2 B.﹣1 C.0 D.15.﹣的絕對值是()A.﹣ B.﹣ C. D.6.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.487.已知一元二次方程的兩個實數(shù)根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.68.不等式組的解集表示在數(shù)軸上正確的是()A. B. C. D.9.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元10.如圖,已知函數(shù)與的圖象在第二象限交于點,點在的圖象上,且點B在以O點為圓心,OA為半徑的上,則k的值為A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:mx2﹣6mx+9m=_____.12.如圖,點A(3,n)在雙曲線y=上,過點A作AC⊥x軸,垂足為C.線段OA的垂直平分線交OC于點B,則△ABC周長的值是.13.如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在點A′的位置,若OB=,tan∠BOC=,則點A′的坐標為_____.14.如圖,圓錐底面半徑為rcm,母線長為10cm,其側(cè)面展開圖是圓心角為216°的扇形,則r的值為.15.如圖,在△ABC中,∠A=70°,∠B=50°,點D,E分別為AB,AC上的點,沿DE折疊,使點A落在BC邊上點F處,若△EFC為直角三角形,則∠BDF的度數(shù)為______.16.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.三、解答題(共8題,共72分)17.(8分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.18.(8分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結(jié)果保留π).19.(8分)在“優(yōu)秀傳統(tǒng)文化進校園”活動中,學校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術(shù),書法,器樂,要求七年級學生人人參加,并且每人只能參加其中一項活動.教務處在該校七年級學生中隨機抽取了100名學生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請解答下列問題:請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;在參加“剪紙”活動項目的學生中,男生所占的百分比是多少?若該校七年級學生共有500人,請估計其中參加“書法”項目活動的有多少人?學校教務處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?20.(8分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結(jié)果保留根號)21.(8分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.22.(10分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,(1)求證:AF=DC;(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.23.(12分)如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4).(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出B1點的坐標;(2)畫出△ABC繞原點O旋轉(zhuǎn)180°后得到的圖形△A2B2C2,并寫出B2點的坐標;(3)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標.24.如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側(cè)),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.2、A【解析】試題分析:由題意可知:從左面看得到的平面圖形是長方形是柱體,從上面看得到的平面圖形是圓的是圓柱或圓錐,綜合得出這個幾何體為圓柱,由此選擇答案即可.解:從左面看得到的平面圖形是長方形是柱體,符合條件的有A、C、D,從上面看得到的平面圖形是圓的是圓柱或圓錐,符合條件的有A、B,綜上所知這個幾何體是圓柱.故選A.考點:由三視圖判斷幾何體.3、B【解析】
根據(jù)二次根式有意義的條件即可求出的范圍.【詳解】由題意可知:,解得:,故選:.【點睛】考查二次根式的意義,解題的關(guān)鍵是熟練運用二次根式有意義的條件.4、A【解析】
根據(jù)兩個負數(shù)比較大小,絕對值大的負數(shù)反而小,可得答案.【詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯誤;C、0>﹣1,故C錯誤;D、1>﹣1,故D錯誤;故選:A.【點睛】本題考查了有理數(shù)大小比較,利用了正數(shù)大于0,0大于負數(shù),注意兩個負數(shù)比較大小,絕對值大的負數(shù)反而?。?、C【解析】
根據(jù)負數(shù)的絕對值是它的相反數(shù),可得答案.【詳解】│-│=,A錯誤;│-│=,B錯誤;││=,D錯誤;││=,故選C.【點睛】本題考查了絕對值,解題的關(guān)鍵是掌握絕對值的概念進行解題.6、D【解析】
由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點睛】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應點之間的距離就是平移的距離.7、B【解析】
根據(jù)根與系數(shù)的關(guān)系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計算即可.【詳解】根據(jù)題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個為x1,x2,則x1+x2,x1?x2.8、C【解析】
根據(jù)題意先解出的解集是,把此解集表示在數(shù)軸上要注意表示時要注意起始標記為空心圓圈,方向向右;表示時要注意方向向左,起始的標記為實心圓點,綜上所述C的表示符合這些條件.故應選C.9、C【解析】
根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質(zhì)求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.10、A【解析】
由題意,因為與反比例函數(shù)都是關(guān)于直線對稱,推出A與B關(guān)于直線對稱,推出,可得,求出m即可解決問題;【詳解】函數(shù)與的圖象在第二象限交于點,點與反比例函數(shù)都是關(guān)于直線對稱,與B關(guān)于直線對稱,,,點故選:A.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的圖像與性質(zhì),圓的對稱性及軸對稱的性質(zhì).解題的關(guān)鍵是靈活運用所學知識解決問題,本題的突破點是發(fā)現(xiàn)A,B關(guān)于直線對稱.二、填空題(本大題共6個小題,每小題3分,共18分)11、m(x﹣3)1.【解析】
先把m提出來,然后對括號里面的多項式用公式法分解即可?!驹斀狻縨=m(=m【點睛】解題的關(guān)鍵是熟練掌握因式分解的方法。12、2.【解析】
先求出點A的坐標,根據(jù)點的坐標的定義得到OC=3,AC=2,再根據(jù)線段垂直平分線的性質(zhì)可知AB=OB,由此推出△ABC的周長=OC+AC.【詳解】由點A(3,n)在雙曲線y=上得,n=2.∴A(3,2).∵線段OA的垂直平分線交OC于點B,∴OB=AB.則在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周長的值是2.13、【解析】
如圖,作輔助線;根據(jù)題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點A′作A′D⊥x軸與點D;設A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)【點睛】該題以平面直角坐標系為載體,以翻折變換為方法構(gòu)造而成;綜合考查了矩形的性質(zhì)、三角函數(shù)的定義、勾股定理等幾何知識點;對分析問題解決問題的能力提出了較高的要求.14、1.【解析】試題分析:∵圓錐底面半徑為rcm,母線長為10cm,其側(cè)面展開圖是圓心角為211°的扇形,∴2πr=×2π×10,解得r=1.故答案為:1.【考點】圓錐的計算.15、110°或50°.【解析】
由內(nèi)角和定理得出∠C=60°,根據(jù)翻折變換的性質(zhì)知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°兩種情況,先求出∠DFC度數(shù),繼而由∠BDF=∠DFC﹣∠B可得答案.【詳解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性質(zhì)知∠DFE=∠A=70°,分兩種情況討論:①當∠EFC=90°時,∠DFC=∠DFE+∠EFC=160°,則∠BDF=∠DFC﹣∠B=110°;②當∠FEC=90°時,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;綜上:∠BDF的度數(shù)為110°或50°.故答案為110°或50°.【點睛】本題考查的是圖形翻折變換的性質(zhì)及三角形內(nèi)角和定理,熟知折疊的性質(zhì)、三角形的內(nèi)角和定理、三角形外角性質(zhì)是解答此題的關(guān)鍵.16、51.【解析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.三、解答題(共8題,共72分)17、(1)詳見解析;(2)30°.【解析】
(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質(zhì)可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質(zhì)即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.【點睛】本題考查尺規(guī)作圖,考查了垂直平分線的性質(zhì)、直角三角形兩銳角互余的性質(zhì)及等腰三角形的性質(zhì),線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質(zhì)是解題關(guān)鍵.18、(1)見解析;(2)【解析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結(jié)合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴陰影部分的面積=S扇形ODE=.19、(1)詳見解析;(2)40%;(3)105;(4).【解析】
(1)先求出參加活動的女生人數(shù),進而求出參加武術(shù)的女生人數(shù),即可補全條形統(tǒng)計圖,再分別求出參加武術(shù)的人數(shù)和參加器樂的人數(shù),即可求出百分比;(2)用參加剪紙中男生人數(shù)除以剪紙的總?cè)藬?shù)即可得出結(jié)論;(3)根據(jù)樣本估計總體的方法計算即可;(4)利用概率公式即可得出結(jié)論.【詳解】(1)由條形圖知,男生共有:10+20+13+9=52人,∴女生人數(shù)為100-52=48人,∴參加武術(shù)的女生為48-15-8-15=10人,∴參加武術(shù)的人數(shù)為20+10=30人,∴30÷100=30%,參加器樂的人數(shù)為9+15=24人,∴24÷100=24%,補全條形統(tǒng)計圖和扇形統(tǒng)計圖如圖所示:(2)在參加“剪紙”活動項目的學生中,男生所占的百分比是100%=40%.答:在參加“剪紙”活動項目的學生中,男生所占的百分比為40%.(3)500×21%=105(人).答:估計其中參加“書法”項目活動的有105人.(4).答:正好抽到參加“器樂”活動項目的女生的概率為.【點睛】此題主要考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、【解析】
設燈柱BC的長為h米,過點A作AH⊥CD于點H,過點B作BE⊥AH于點E,構(gòu)造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【詳解】解:設燈柱的長為米,過點作于點過點做于點∴四邊形為矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴燈柱的高為米.21、(1)證明見解析;(1);(3)1.【解析】
(1)要證明DE是的⊙O切線,證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據(jù)已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據(jù)OG∥BE得出=,即可計算出AD.【詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線;(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據(jù)SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【點睛】本題考查了相似三角形與全等三角形的判定與性質(zhì)與切線的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì)與切線的性質(zhì).22、(1)見解析(2)見解析【解析】
(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形23、(1)畫圖見解析;(2)畫圖見解析;(3)畫圖見解析.【解析】
試題分析:(1)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能硬件創(chuàng)新企業(yè)評審
- 國際工藝品設備租賃協(xié)議
- 通信設備運輸招投標文件
- 會員消費IC卡積分規(guī)則
- 無人機駕駛員聘用合同范本
- 執(zhí)行院務公開管理辦法
- 鐵路工程供貨施工合同范本
- 金屬材料采購授權(quán)委托書
- 通訊設備項目獎勵政策
- 煤炭供應商運輸合作協(xié)議
- 《CIS企業(yè)形象策劃》課件
- 機器加盟協(xié)議合同范例
- GB/T 44978-2024智慧城市基礎設施連接城市和城市群的快速智慧交通
- 2024-2030年中國油田服務市場發(fā)展?jié)摿εc前景戰(zhàn)略規(guī)劃分析報告
- 2025屆北京師范大學附中高三下學期聯(lián)考英語試題含解析
- 2024年企業(yè)年度營銷策劃合同
- 黑龍江省哈爾濱市道里區(qū)2023-2024學年八年級上學期數(shù)學期末考試試卷
- 中級計量經(jīng)濟學知到智慧樹章節(jié)測試課后答案2024年秋浙江工業(yè)大學
- 營銷中心2024年規(guī)劃
- 全過程造價咨詢實施方案
- 【人教版一年級起點】三年級上冊英語英語知識點總結(jié)
評論
0/150
提交評論