2022年湖北省棗陽陽光校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
2022年湖北省棗陽陽光校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
2022年湖北省棗陽陽光校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
2022年湖北省棗陽陽光校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
2022年湖北省棗陽陽光校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年湖北省棗陽陽光校中考適應(yīng)性考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.﹣2018的絕對值是()A.±2018 B.﹣2018 C.﹣ D.20182.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)23.已知點(diǎn)P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結(jié)論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n4.下列成語描述的事件為隨機(jī)事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚5.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.6.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠17.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點(diǎn)形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點(diǎn)的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個(gè).A.4 B.3 C.2 D.18.如圖,將△ABC沿著DE剪成一個(gè)小三角形ADE和一個(gè)四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應(yīng)是()A. B. C. D.9.若代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x=0 B.x=2 C.x≠0 D.x≠210.如圖,已知,,則的度數(shù)為()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點(diǎn)A′和A,點(diǎn)B′和B分別對應(yīng)).若AB=2,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過A′,B,則k的值為_____.12.有一個(gè)正六面體,六個(gè)面上分別寫有1~6這6個(gè)整數(shù),投擲這個(gè)正六面體一次,向上一面的數(shù)字是2的倍數(shù)或3的倍數(shù)的概率是____.13.如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,得到△A′O′B,且反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點(diǎn)C,若SABO=4,tan∠BAO=2,則k=_____.14.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)30°得到線段PC,連接BC.若點(diǎn)A的坐標(biāo)為(﹣1,0),則線段BC的長為_____.15.當(dāng)__________時(shí),二次函數(shù)有最小值___________.16.的算術(shù)平方根是_____.三、解答題(共8題,共72分)17.(8分)計(jì)算:2﹣1+|﹣|++2cos30°18.(8分)一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再從余下的2個(gè)球中任意摸出1個(gè)球.用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;求兩次摸到的球的顏色不同的概率.19.(8分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點(diǎn)F,交BC于點(diǎn)G,交AB的延長線于點(diǎn)E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.20.(8分)如圖1,已知扇形MON的半徑為,∠MON=90°,點(diǎn)B在弧MN上移動,聯(lián)結(jié)BM,作OD⊥BM,垂足為點(diǎn)D,C為線段OD上一點(diǎn),且OC=BM,聯(lián)結(jié)BC并延長交半徑OM于點(diǎn)A,設(shè)OA=x,∠COM的正切值為y.(1)如圖2,當(dāng)AB⊥OM時(shí),求證:AM=AC;(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)當(dāng)△OAC為等腰三角形時(shí),求x的值.21.(8分)某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動會,有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用T1、T2表示).該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率P為;該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率P1,利用列表法或樹狀圖加以說明;該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率P2為.22.(10分)科研所計(jì)劃建一幢宿舍樓,因?yàn)榭蒲兴鶎?shí)驗(yàn)中會產(chǎn)生輻射,所以需要有兩項(xiàng)配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進(jìn)行防輻射處理;已知防輻射費(fèi)y萬元與科研所到宿舍樓的距離xkm之間的關(guān)系式為y=ax+b(0≤x≤3).當(dāng)科研所到宿舍樓的距離為1km時(shí),防輻射費(fèi)用為720萬元;當(dāng)科研所到宿含樓的距離為3km或大于3km時(shí),輻射影響忽略不計(jì),不進(jìn)行防輻射處理,設(shè)修路的費(fèi)用與x2成正比,且比例系數(shù)為m萬元,配套工程費(fèi)w=防輻射費(fèi)+修路費(fèi).(1)當(dāng)科研所到宿舍樓的距離x=3km時(shí),防輻射費(fèi)y=____萬元,a=____,b=____;(2)若m=90時(shí),求當(dāng)科研所到宿舍樓的距離為多少km時(shí),配套工程費(fèi)最少?(3)如果最低配套工程費(fèi)不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?23.(12分)解不等式,并把它的解集表示在數(shù)軸上.24.如圖,直線l切⊙O于點(diǎn)A,點(diǎn)P為直線l上一點(diǎn),直線PO交⊙O于點(diǎn)C、B,點(diǎn)D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:根據(jù)絕對值的定義解答即可,數(shù)軸上,表示一個(gè)數(shù)a的點(diǎn)到原點(diǎn)的距離叫做這個(gè)數(shù)的絕對值.詳解:﹣2018的絕對值是2018,即.故選D.點(diǎn)睛:本題考查了絕對值的定義,熟練掌握絕對值的定義是解答本題的關(guān)鍵,正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0.2、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個(gè)單位長度,∴平移后解析式為:y=-2考點(diǎn):二次函數(shù)圖象與幾何變換.3、D【解析】

根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點(diǎn)睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時(shí),圖象位于二四象限是解題關(guān)鍵.4、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機(jī)事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點(diǎn):隨機(jī)事件.5、B【解析】

先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.6、D【解析】

先根據(jù)AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結(jié)論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點(diǎn)睛】本題考查的是平行線的判定,用到的知識點(diǎn)為:兩直線平行,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ).7、C【解析】

∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點(diǎn)形成的四邊形一定是菱形,∴②錯(cuò)誤;∵對角線相等的平行四邊形才是矩形,∴③錯(cuò)誤;∵經(jīng)過平行四邊形對角線交點(diǎn)的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個(gè),故選C.考點(diǎn):中點(diǎn)四邊形;平行四邊形的性質(zhì);菱形的判定;矩形的判定與性質(zhì);正方形的判定.8、C【解析】

利用相似三角形的性質(zhì)即可判斷.【詳解】設(shè)AD=x,AE=y(tǒng),∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點(diǎn)睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.9、D【解析】

根據(jù)分式的分母不等于0即可解題.【詳解】解:∵代數(shù)式有意義,∴x-2≠0,即x≠2,故選D.【點(diǎn)睛】本題考查了分式有意義的條件,屬于簡單題,熟悉分式有意義的條件是解題關(guān)鍵.10、B【解析】分析:根據(jù)∠AOC和∠BOC的度數(shù)得出∠AOB的度數(shù),從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點(diǎn)睛:本題主要考查的是角度的計(jì)算問題,屬于基礎(chǔ)題型.理解各角之間的關(guān)系是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設(shè)B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點(diǎn)A′,B,∴m?m=m,∴m=,∴k=故答案為12、23【解析】∵投擲這個(gè)正六面體一次,向上的一面有6種情況,向上一面的數(shù)字是2的倍數(shù)或3的倍數(shù)的有2、3、4、6共4種情況,∴其概率是=.【點(diǎn)睛】此題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.13、1【解析】設(shè)點(diǎn)C坐標(biāo)為(x,y),作CD⊥BO′交邊BO′于點(diǎn)D,∵tan∠BAO=2,∴=2,∵S△ABO=?AO?BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵點(diǎn)C為斜邊A′B的中點(diǎn),CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案為1.14、22【解析】

只要證明△PBC是等腰直角三角形即可解決問題.【詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【點(diǎn)睛】本題考查翻折變換、坐標(biāo)與圖形的變化、等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是證明△PBC是等腰直角三角形.15、15【解析】二次函數(shù)配方,得:,所以,當(dāng)x=1時(shí),y有最小值5,故答案為1,5.16、【解析】∵=8,()2=8,∴的算術(shù)平方根是.故答案為:.三、解答題(共8題,共72分)17、+4.【解析】

原式利用負(fù)整數(shù)指數(shù)冪法則,二次根式性質(zhì),以及特殊角的三角函數(shù)值計(jì)算即可求出值.【詳解】原式=++2+2×=+4.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,涉及了負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式的化簡等,熟練掌握各運(yùn)算的運(yùn)算法則是解本題的關(guān)鍵.18、(1)詳見解析;(2).【解析】試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)由(1)中樹狀圖可求得兩次摸到的球的顏色不同的情況有4種,再利用概率公式求解即可求得答案.試題解析:(1)如圖:,所有可能的結(jié)果為(白1,白2)、(白1,紅)、(白2,白1)、(白2,紅)、(紅,白1)、(紅,白2);(2)共有6種情況,兩次摸到的球的顏色不同的情況有4種,概率為.19、(1)證明見解析;(2)AB=【解析】

(1)證明:∵,DE⊥AC于點(diǎn)F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.連接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=20、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進(jìn)而判斷出△OAC≌△BAM,即可得出結(jié)論;(2)先判斷出BD=DM,進(jìn)而得出,進(jìn)而得出AE=,再判斷出,即可得出結(jié)論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結(jié)論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點(diǎn)D作DE∥AB,交OM于點(diǎn)E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當(dāng)OA=OC時(shí).∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當(dāng)AO=AC時(shí),則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當(dāng)CO=CA時(shí),則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當(dāng)△OAC為等腰三角形時(shí),x的值為.點(diǎn)睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質(zhì),圓的有關(guān)性質(zhì),勾股定理,等腰三角形的性質(zhì),建立y關(guān)于x的函數(shù)關(guān)系式是解答本題的關(guān)鍵.21、(1);(1);(3);【解析】

(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結(jié)果數(shù),再找出一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率P1;(3)找出兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率P1.【詳解】解:(1)該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率P=;(1)畫樹狀圖為:共有10種等可能的結(jié)果數(shù),其中一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的結(jié)果數(shù)為11,所以一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率P1==;(3)兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的結(jié)果數(shù)為6,所以兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率P1==.故答案為.考點(diǎn):列表法與樹狀圖法.22、(1)0,﹣360,101;(2)當(dāng)距離為2公里時(shí),配套工程費(fèi)用最少;(3)0<m≤1.【解析】

(1)當(dāng)x=1時(shí),y=720,當(dāng)x=3時(shí),y=0,將x、y代入y=ax+b,即可求解;(2)根據(jù)題目:配套工程費(fèi)w=防輻射費(fèi)+修路費(fèi)分0≤x≤3和x≥3時(shí)討論.①當(dāng)0≤x≤3時(shí),配套工程費(fèi)W=90x2﹣360x+101,②當(dāng)x≥3時(shí),W=90x2,分別求最小值即可;(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其對稱軸x=,然后討論:x==3時(shí)和x=>3時(shí)兩種情況m取值即可求解.【詳解】解:(1)當(dāng)x=1時(shí),y=720,當(dāng)x=3時(shí),y=0,將x、y代入y=ax+b,解得:a=﹣360,b=101,故答案為0,﹣360,101;(2)①當(dāng)0≤x≤3時(shí),配套工程費(fèi)W=90x2﹣360x+101,∴當(dāng)x=2時(shí),Wmin=720;②當(dāng)x≥3時(shí),W

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論